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ABSTRACT

L. Rudin, S. Osher and E. Fatemi proposed a method
for image restoration based on the minimization of the
Total Variation submitted to the constraints given by
the image acquisition model. To ensure the satisfaction
of the constraints, a Lagrange multiplier A has to be
estimated. We observe that if A is global, the constraints
are also globally satisfied, but not locally. We discuss
the problem of imposing local constraints with a finite
number of Lagrange multipliers associated to a partition
of the image and we display some experimental results
obtained with this model.

1 INTRODUCTION

We suppose that our image (or data) z is a scalar func-
tion defined on a rectangle Q in IR%. Generally, the
degradation of the original image u occurs during image
acquisition and can be modeled by a linear and trans-
lation invariant blur and additive noise. The equation
relating u to z can be written as

z=Ku+n 1)

where K is a convolution operator with impulse response
k, i.e., Ku = k * u, and n is an additive white noise
of standard deviation o. In practice, the noise can be
considered as Gaussian.

The problem of recovering u from z is ill-posed. First,
the blurring operator need not be invertible. Second,
if the inverse operator K ! exists, applying it to both
sides of (1) we obtain

K 'z=u+ K 'n. (2)

Writing K ~'n in he Fourier domain, we have K ~1n =
A\ Vv ~

(%) where f denotes the Fourier transform of f and

fV denotes the inverse Fourier transform. From this

equation, we see that the noise might blow up at the

frequencies for which k vanishes or it becomes small.
Several methods have been proposed to recover wu.

Most of them can be classified as regularization meth-
ods which may take into account statistical properties
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(Wiener filters), information theoretic properties ([2]),
a priori geometric models ([9]) or the functional ana-
lytic behavior of the image given in terms of its wavelet
coefficients ([3]).

The tipical strategy to solve this ill-conditioning is
regularization. Then the solution of (1) is estimated by
minimizing a functional

Jy(w) =l Ku =2 I3 +v | Qu 13 3)

with v > 0, which yields the estimate u, = (K'K +
vQ!'Q) 1Ktz where @ is a linear regularization opera-
tor. Observe that to obtain u, we have to solve a linear
equation. The role of () is on one hand to move the
small eigenvalues of K!K away from zero while leav-
ing the large eigenvalues unchanged, and, on the other
hand, to incorporate the a priori (smoothness) knowl-
edge that we have on u. One of the first linear operators
used was Qu = Vu. In this case the smoothness con-
straint is too restrictive. Indeed, functions u € L%*(Q)
(L?(Q2) denotes the space of square integrable functions
in Q) such that Du € L?(Q) cannot have discontinuities
along rectifiable curves. These observations motivated
the introduction of Total Variation in image restoration
models by L. Rudin, S. Osher and E. Fatemi in their
seminal work [9]. The a priori hypothesis is that func-
tions of bounded variation (the BV model) ([5]) are a
reasonable functional model for many problems in im-
age processing, in particular, for restoration problems
([9]). Tipically, functions of bounded variation have dis-
continuities along rectifiable curves, being continuous in
some sense (in the measure theoretic sense) away from
discontinuities. The discontinuities could be identified
with edges. The ability of this functional to describe
textures is less clear: some textures can be recovered,
but up to a certain scale of oscillation.

On the basis of the BV model, Rudin-Osher-Fatemi
[9] proposed to solve the following constrained minimiza-
tion problem

Minimize / |Du|dx with constraints

(4)
/Ku: z,/|Ku—z|2dx:az|Q|.
Q Q Q



Here we assume that u € L?(Q) is a function of bounded
variation in Q, i.e., the distributional gradient of u is a
measure with finite total mass [, |Dul. The first con-
straint corresponds to the assumption that the noise has
zero mean, and the second that its standard deviation is
o. The constraints are a way to incorporate the image
acquisition model given in terms on equation (1).

1.1 The Lagrange multiplier method

In practice, the above problem is solved via the following
unconstrained minimization problem

Minimize/ |Du|dm+5/ |Ku—z*dz  (5)
Q 2 Ja

for some Lagrange multiplier A. We note that the first
constraint is authomatically satisfied if K1 =1 [1]. The
constraint has been introduced as a penalization term.
The regularization parameter A controls the trade-off
between the goodness of fit of the constraint and the
smoothnes term given by the Total Variation. In this
formulation, a methodology is required for a correct
choice of X [9],[1]. The most succesful analysis of the
connections between (4) and (5) were given by A. Cham-
bolle and P.L. Lions in [1]. Indeed, they proved that,
under some conditions on the kernel K and the data z,
both problems are equivalent for some positive value of
the Lagrange multiplier A.

The Euler-Lagrange equation of (5) is

D
—div (—“) FAK (Ku—2)=0 inQ
| Du| (6)
z-v=0 on 90N
2 LOCAL CONSTRAINTS

If, for simplicity, we consider a discrete image model,
then we may write

z(i,) = Ku(i, j) + n(i, j)

where n(i,j) € N(0,02). Then, if I is a subset of the
indexes (4,7), then

Si=25 Y (l0d) - Ku@i)) = 5 3 i)’

(i,5)el (é5)€l

has a x? distribution with |I| (the number of points in
I) degrees of freedom. In particular,

E(S;)=|I| and war(Sr) =2|I|.

By the Central Limit Theorem, we have

1 2
P(|S;—|I|]| >« 21)—)—/ et /2dt, (1)
e

I
as |I| —» oo, or

P(I s S ern(ind)? = o?| > w0, [2) =
1

42
ﬁflt|>we t /2dt

(8)

Thus, the expressionﬁ Z(i,j)el n(i,j)? represents o>

with an error proportional to LI To obtain this esti-
mate we need to work at the discrete level.

We conclude that, for a large region O, we should have
that the local constraint

/ (Ku - 2)? = 6%|0| (9)
o

should hold approximately. We shall check experimen-
tally that this is not the case for the solution u* of (5)
with A chosen so that [, (Ku* — 2)* = ¢2|Q|. Thus, the
constraints have to be imposed locally.

2.1 Local Selection of the Lagrange multiplier
Suppose that {01, ..., Op} is a partition of {2 and assume
that O; have Lipschitz boundaries. Given Ay, ..., Ap, we
consider the following problem

1
Minimize/ |Du| dz + 5/ Mz)|Ku — z*dz (10)
Q Q

where A\(z) = >°F_, Aixo;. One can prove that the min-
imization problem (10) has a solution for any set of val-
ues A; > 0 and there are values (A}, ..., A};), Aj > 0, such
that there is solution of (10) which is also a solution of

Minimize / |Du| dz
¢ (11)
with / |Ku — z|* dx < 0|04, Vi=1,...,p.
O;
Moreover, for each ¢ such that Ay > 0 the constraint
is satisfied with equality instead of inequality. If A; >
0,7 =1,..,p, and K is injective then the solution is
unique.

3 NUMERICAL EXPERIMENTS

The convolution kernel of the first model is given by

I:EE;Z)HT?YHM (sinz(zgrg)) (sin(21r77)) (sz’r;(;rﬁ) )7 (12)

27n

where £,n € [—2,1], 7¢ = 1.505, 7, = 1.412. Observe
that K is injective.

We have assumed that the noise is a white Gaussian
noise of standard deviation o. Following [8], the sig-
nal to noise ratio, or SNR, can be approximated by the
quotient between the average of the signal and the stan-
dard deviation of the signal for the average luminance
SNR = %. Thus o = %. In practice, the
values of SNR = 50,100 are realistic and give rise to
the same difficulty as the real noise.

To solve (5) with a fixed value of A we use a gradient
descent method. The correct value of A can be computed
by bisection. Another possibility is to observe that the

quantity Qq(ut) = ﬁ Jo(Ku* — 2)? is decreasing in



Figure 1: Original image.

A ([1]) and we can increase/decrease A until the con-
straint Qq(u?) = o? is satisfied. Figure 1 displays the
original uncorrupted image. Figure 2 has been obtained
by convolving Figure 1 with kernel k£ and adding a noise
of standard deviation ¢ = 1. Figure 3, Top, is the re-
stored image obtained by applying (5) with the value of
A selected so that Qq(u’) = 0?2, indeed, with A = 0.35.
In practice, one would select a value of A which gives a
visually satisfactory result, even if the constraint is not
satisfied. The purpose of the experiment is to show that
this value of A does not imply that the constraint holds
locally for the regions of a partition of the image. We
have computed a partition using Mumford-Shah’s seg-
mentation algorithm and we display in Figure 3, Bot-
tom, the values of Qo(u*) = 5y [, (Ku* — 2)* when
O is the region depicted in white in Figure 4. We see
that the constraint is not satisfied for this region, indeed
Qo(u*) does not decrease to o2 = 1.

Let us describe the algorithm to minimize 10. We
start with a partition of the image obtained with
Mumford-Shah’s segmentation algorithm.

(i) For each set of values \; > 0, i = 1,..., P, we solve
iteratively (10), until we reach the asymptotic state
U(Al"“’)\p).

(74) Initially, we take the values of A\; > 0 small enough
so that (*) ‘5—” Jo,(Ku*—2)* > 0, Vi=1,..,pholds.

(#31) For each i € {1, ...,p} for which (*) holds, increase
the value of \; and compute again the asymptotic state.

Figure 5 displays the restored image u obtained by
using the above algorithm. In Figures 6, 7 we display the
values of Qo (u) for the regions depicted in Figure 4. We
may conclude that imposing local constraints enables us
to get a better reconstruction both at textured and non-
textured areas.
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Figure 2: Degraded image.
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Figure 3: Top: Restored with global constraint. Bot-
tom: Evolution of Qq(u).



Figure 4: Two regions obtained with Mumford-Shah’s
algorithm: a textured region in white and a non-
textured one, in light gray.

Figure 5: Restoration result with local constraints.
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Figure 6: Evolution of Qo(u) for the white region.
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Figure 7: Evolution of Qo(u) for the light gray region.
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