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ABSTRACT

Motion transparency phenomena in image sequences
are frequent but classical methods of motion estimation
are unable to deal with them. This paper describes a
method for estimating optical flow by a generalization of
the brightness constancy assumption to additive trans-
parencies. This assumption is based on three successive
images of a sequence. Thus, by a development to its
second order, we obtain an extension of the optical flow
constraint equation. The approach assumes that mo-
tion is translational on a region large enough in order to
regularize the aperture problem. In the way of avoiding
outliers, due to a non respect of the brightness constancy
assumption, a robust multi-resolution method is used. It
is composed of a low-pass pyramid and a M-estimator
technique. This method offers some good results on ar-
tificial and natural image sequences.

1 INTRODUCTION

In nature, motions in transparencies are very frequent.
These phenomena happen when at least two elements
are superposed in an image sequence and when these
elements are animated by different motions. The most
well-known examples of motion transparencies are re-
flections on transparent surfaces (e.g. windows, wa-
ter). These phenomena can also be found in partial-
transparencies, aka partial occlusions. These kinds of
transparencies happen when the object in the fore-
ground is fragmented. The easiest examples are occlu-
sions caused by gates or the branches of a tree.

Several methods exist to estimate the motion of trans-
parent objects with algorithms based on regression tech-
niques [4, 2]. These methods estimate multiple motions
in a whole image. However, they use local measures
and so can make out only one velocity vector in each
pixel of the image sequence. Other methods can be used
to deal with transparencies at a local level. It is the
case for Shizawa and Mase [7], who set up a model for
transparency, starting from the Optical Flow Constraint
Equation (OFCE). It turns the motion of objects into
uniform translations with the help of spatial and tempo-
ral derivatives, which are often used in motion estima-

tion. This method based on the OFCE extend velocity
estimations which, until now, were possible only with
sequences having a single motion, i.e. in which there
was no transparency. Vernon [8] approaches things dif-
ferently, since he does not model the motions of each ob-
ject separately as usual. On the contrary, he takes into
account the transparency phenomenon inside a system
of equations itself.

This article starts with the assumption of motion
translation on the condition that there is no illumina-
tion change. It enables an equation to be used to solve
the problem of additive transparency. This equation is
a generalization of OFCE based on three successive im-
ages of a sequence when it is made of two transparent
objects. In this way the optical flow of the sequence
can be estimated. Section 2 explains the modelisation
of an image sequence which leads to a generalization of
OFCE to additive transparencies. Section 3 shows how
M-estimators are used to make a more robust estima-
tion. Section 4 provides some experimental results in
natural image sequences.

2 GENERALIZATION OF OFCE TO ADDI-
TIVE TRANSPARENCIES

2.1 The modeling of an image sequence

The basic assumption lies in the necessity to make a
model – with a convolution filter – of the motion passing
through successive images. It means that we work at
the level of a uniform translation motion, which is the
common assumption in the field of motion estimation.
Before modeling the sequence, we want to put forward
another assumption – the absence of intensity variation,
which means that the lighting of the setting does not
change.

Later on, we will deal with the case of additive trans-
parency, where there are only two objects in motion
u1(x, y) and u2(x, y) [5]. A velocity filter is allotted to
each object: f(x, y) and g(x, y). So, thanks to convolu-
tion operator ∗n, which means that we convolute n times
the motion filter with its corresponding object, each im-
age in(x, y) of a sequence presenting a phenomenon of
additive transparency can be represented by:
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in(x, y) = g(x, y) ∗n u1(x, y) + f(x, y) ∗n u2(x, y) (1)

where x and y represent the horizontal and vertical spa-
tial coordinates. Index n represents the sampling of
time.

2.2 Brightness constancy assumption

If we apply the spatial Fourier transform to equation (1).
If we take, then, three successive images from the se-
quence and solve the system in order to suppress both
transparent objects and keep only the two filters with
the successive images, we reach the following equation:

In(fx, fy) = (F−1(fx, fy) +G−1(fx, fy))× In+1(fx, fy)

−F−1(fx, fy)×G−1(fx, fy)× In+2(fx, fy) (2)

This is a non-linear equation related to a second de-
gree equation. It shows that the transparent motion is
entirely symmetrical. Indeed, it is possible to invert the
filters and the objects without changing the equation.

The last step consists in calculating the inverse
Fourier transform while keeping in mind that the mo-
tion filters are Dirac delta distribution (for example:
f(x, y) = δ(x+ vx1

, y + vy1
)). By this method we come

to the extension of the brightness constancy assumption
in the field of additive transparency:

in(x, y)= in+1(x+ vx1
, y + vy1

)+in+1(x+ vx2
, y + vy2

)

− in+2(x+ (vx1
+ vx2

), y + (vy1
+ vy2

)) (3)

where (vx1
, vy1

) and (vx2
, vy2

) represent the velocity vec-
tors of objects in transparency u1(x, y) and u2(x, y).

In the field of usual motion estimation, where there
is only one motion in each part of the sequence, the
brightness constancy equation – obtained through the
translation assumption of moving objects – is the fol-
lowing:

in(x, y) = in+1(x+ vx, y + vy) (4)

Thus, the similarity between the two equations en-
ables us to apply classical techniques such as robust es-
timation and multi-resolution that have been already
used in order to solve our new equation.

2.3 Motion constraint equation

We develop the equation (3) with the Taylor expansion
on each velocity to its second order:

it(x, y) = (vx1
+ vx2

) ixn+1(x, y) + (vy1
+ vy2

) iyn+1(x, y)

−(vx1
+ vx2

) ixn+2(x, y)− (vy1
+ vy2

) iyn+2(x, y)

+
(v2
x1

+ v2
x2

)

2
ix

2

n+1(x, y) +
(v2
y1

+ v2
y2

)

2
iy

2

n+1(x, y)

− (vx1
+ vx2

)2

2
ix

2

n+2(x, y)− (vy1
+ vy2

)2

2
iy

2

n+2(x, y)

+(vx1
vy1

+ vx2
vy2

) ixyn+1(x, y)

−(vx1
+ vx2

)(vy1
+ vy2

) ixyn+2(x, y) (5)

with,

it(x, y) = in(x, y)− 2 ∗ in+1(x, y) + in+2(x, y),

i∗n(x, y) =
∂in(x, y)

∂∗ , i∗∗n (x, y) =
∂in(x, y)2

∂ ∗ ∂∗ .

Equation (5) represents the extension of the Optical
Flow Constraint Equation (OFCE) to additive trans-
parency. This equation, relevant to each pixel of the
image sequence, has eight unknowns quantities. This is
the aperture problem [10]. To resolve this, we need to
state that the motion is locally constant inside a win-
dow which is large enough, at least eight pixels, around
the pixel being studied. We choose a window of 21× 21
pixels. Thus, equation (5) can be written in matrix no-
tation in the form of a least-squares problem.

3 ROBUST MULTI-RESOLUTION ESTIMA-
TION

The method we use to reduce noise in image sequences
is based on a multi-resolution pyramid with two lev-
els which allows large displacements to be estimated.
Between levels, a motion compensation technique is ap-
plied. This technique enables us to make a more accu-
rate estimation and also reduce the number of unknown
quantities when solving the problem with robust least-
squares for reducing the influence of outliers.

3.1 First step

First of all, we estimate velocities with the least-squares
method applied to a series of three sub-sampled images
[3] (level 1 of the pyramid) taken from the sequence
being analyzed. To obtain better results, we use the
M-estimator technique. It differs from the least-squares
technique by minimizing a function of the estimation
error rather than the square number of the error. We
chose as function the ”Tukey’s biweight”. Minimization
by M-estimators can be shown as a robust least-squares
(see [6] for details).

At the end of this step, the velocities ((v̂x1
, v̂y1

) and
(v̂x2

, v̂y2
)) of the two objects in additive transparency

are estimated. This is obtained by finding the solutions
to two second degree equations which are established
from the components of vector resulting from robust
least-squares. We can bring this estimation down to
level 0 of the pyramid (the original images) by over-
sampling the velocities (bilinear interpolation).

3.2 Second step

We use the first estimation of velocities to solve the
OFCE in a robust way through motion compensation
(6) of the original images (level 0 of the pyramid).
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in(x, y) = i1n+1(x+ ṽx1
, y + ṽy1

)+i2n+1(x+ ṽx2
, y + ṽy2

)

− in+2(x+ (ṽx1
+ ṽx2

), y + (ṽy1
+ ṽy2

)) (6)

with,

ṽki = vki − v̂ki

We develop equation (6) with the Taylor expansion,
but this time we do it to the first order. We do not
need to develop the equation in its second order since
the motion compensation suppresses the symmetry ex-
isting between the two objects in transparency when the
second image splits into two images – i1n+1 and i2n+1 (6).

it(x, y) = ṽx1
(i1xn+1(x, y)− ixn+2(x, y))

+ ṽx2
(i2xn+1(x, y)− ixn+2(x, y))

+ ṽy1
(i1yn+1(x, y)− iyn+2(x, y))

+ ṽy2
(i2yn+1(x, y)− iyn+2(x, y))

(7)

with,

it(x, y) = in(x, y)− i1n+1(x, y)− i2n+1(x, y) + in+2(x, y)

We have a new linear equation with four unknown
quantities for each pixel of the image in question. We
can solve this problem by applying the spatial constancy
of motion to quite a large window (more than four pix-
els). We have chosen the same size – 21× 21 pixels – to
reduce noise in the sequence. We also use the technique
of M-estimators to solve equation (7).

Once we have carried out the second estimation, we
obtain the new velocity estimations of the original image
vki = v̂ki + ṽki .

4 APPLICATION OF THE METHOD

In order to assess the results of the estimation, we have
chosen to show the separation of two objects in trans-
parency through the motion compensation method. The
final result corresponds to two images representing the
difference between the objects, between moment n and
moment n+ 1.

This method has been tested on a sequence made of
real images whose motion was designed artificially in
order to be able to monitor the velocities and, thus, to
quantify them. The ”Titou” sequence is composed of the
”Translation Tree” [1] on which we superposed an image
of a face (Fig. 1) in additive transparency. The motion of
the ”Translation Tree” sequence is a translation motion,
collinear to horizontal axis, with an amplitude of 1.73
to 2.26 pixels per image. The motion of the face image
was created in order to obtain a velocity equal to one
pixel per image collinear to vertical axis.

To define the estimation error, we use the Fleet an-
gular error [1]. Table 1 shows the angular error for all
the optical flow.

(a)

(b) (c)

Figure 1: ”Titou” sequence : superposition of the image
of a face on the ”Translation Tree” sequence at the speed
of (1, 0) pixels per image. (a) Image taken from the se-
quence. (b) Separation of ”Translation Tree”. (c) Sep-
aration of the face image.

Angular error

Velocities Mean Standard deviation

”Translation Tree” 1.67◦ 1.99◦

Face image 7.26◦ 12.92◦

Table 1: Angular error for ”Titou” sequence.

We use the knowledge of the image sequences to quan-
tify the separation of objects in transparency through
the motion compensation method. For that, we show
the difference between the images of the sequences with-
out transparencies, and we compare them to the im-
ages obtained with the compensation method. We have
shown the results in Table 2. This time, the results are
given according to the amplitude, knowing that the im-
ages in this sequence are encoded on eight bits, which
means on 256 grey levels.

Compensation error

Velocities Mean Standard deviation

”Translation Tree” −0.07◦ 3.61◦

Face image 1.60◦ 4.10◦

Table 2: Compensation error for ”Titou” sequence.

This algorithm has also been tested on two natural
image sequences. These sequences are obtained by a
reflection on a transparency surface. The first one is
named ”Transparency sequence” [2] (Fig. 2). This se-
quence is composed of the reflection of someone’s face
on the piece of glass covering a photograph. The dif-
ficulty of this sequence is that moving objects do not
have a real uniform translational motion but are uni-
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(a)

(b) (c)

Figure 2: ”Transparency sequence”. (a) Image taken
from the sequence. (b) Separation of the photograph.
(c) Separation of the reflection.

formly accelerated. The second one is the ”Monalisa”
sequence [9] (Fig. 3). It is created by moving a movie
camera to the right. It shoots a portrait, and on the
piece of glass covering this portrait is reflected a pack
of muesli moving to the left. The important fact of this
sequence is the size of the pack of muesli which does
not cover all the portrait. In these two sequences, the
results are a good standpoint of separation by the com-
pensation technique of the estimated motion. Only a
few artifacts can be seen when the gradient in images is
strong, as when there are frontiers.

(a)

(b) (c)

Figure 3: ”Monalisa” sequence. (a) Image taken from
the sequence. (b) Separation of the portrait. (c) Sepa-
ration of the pack of muesli.

5 CONCLUSION

We have described a velocity estimation method when
faced to sequences of images with transparency phe-
nomena. This technique is a new way of approach-
ing the issue. Indeed, its method of modeling includes

transparency, not in superposing several models with-
out transparency, but in considering it as a real entire
model. We can calculate the velocities by solving a
system of equations based on three successive images
of a sequence, with the help of derivatives and a least
square only. In order to make a more robust estima-
tion and to avoid wrong data, we introduced the use of
M-estimators. The results we obtained on artificial and
natural sequences prove the efficiency of our new ap-
proach.
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