A Causal Optimal Filter of the Second Degree
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We provide a non-linear optimal physically real-
izable filter which guarantees a smaller associated
error than those of the known linear optimal filters
proposed in [1] and [2]. The technique is based on
the best approximation of a stochastic signal by a
specific non-linear operator formed from lower tri-
angular matrices.

1 Introduction

Bode and Shannon [1] proposed a filter which has
a smallest associated error in the class of physically
realizable linear filters. Ruzhansky and Fomin [2]
extended the result [1] to the so called ‘weighted’
linear filter. In this paper, we provide a non-
linear physically realizable filter which guarantees
a smaller associated error than those of the filters
considered in [1], [2]. See Corollary 1 in this con-
nection. Our approach is based on an extension of
the techniques presented in [1] — [4]. Unlike the
methodology provided in [1] — [4] and [6] — [12], the
proposed filter satisfies the additional constraint
(3) below.

Let (92,3, ) be a probability space, where ) is
the set of outcomes, 3 a o—field of measurable sub-
sets of 2 and p : ¥ +— [0,1] an associated proba-
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bility measure on ¥ with x(2) = 1. Suppose that
z € L*(Q,R™) and y € L?(Q2, R™) are random vec-
tors with realizations z(w) € R™ and y(w) € R™,
respectively. Suppose y(w) is observable data and
z(w) is an unobservable signal.

Each operator F' : R* — R™ defines an associ-
ated operator Fr : L2(Q,R™) — L2(Q, R™) via the
equation [Fr(y)](w) = Fly(w)] for each w € Q. It is
customary to write F'(y) rather than Fr(y), since
we then have [F(y)](w) = F[y(w)] for each w € Q.
It is also convenient to write y instead of y(w), z
instead of z(w), etc.

Let 2 = (z1...2)7 € R™ and y =
(y1--.ym)T € R™. Each component z; (or y;) can
be interpreted as a value of z (or y, respectively)
at time t;. We denote by Z; an estimate of x; for
1=1,...,m.

Let F : R™ — R™ be a filter defined by equations

Z = F(y) or

Z; = fim(yla"' 7ym)

with & = (&1...4%,)7 and fi, : R" — R for i =
1,...,m.

The filter F' is called physically realizable or
causal if its estimate Z; of the signal compo-
nent z; is determined from observable components
Y1,---,Yx of data y with k <4, ie. if

&i = fie(yr,- .. y6)  with k<u.

If F is linear, i.e. F' is a matrix, then the latter
condition means that F' is lower triangular.

We consider a class of non-linear filters F' given
by

F(y) = Fo + Fiy + Foy?, (1)

where Fy € R™, F|,F, € R™™ and y? is de-
termined by the Hadamard product so that 3? =
(v?...92)T with y1,...,ym €R.



Let MT*™ be a set of m x m lower traingular
matrices. We wish to find Fé) , F?, F so that

J(Fy, Y, Fy) =  min, J(Fo, F1, o) (2)

subject to
Fr e MT*™ and F, € MT*™, (3)
where
J(Fyo, Fy, F2) = Efl|z — F(y)|] (4)

with E the expectation operator and ||-|| the Frobe-
nius norm.

The condition Fi, F, € MT*™ implies the
causality of the filter satisfying (2).

Note, that a particular case of (1) — (4) with
Fy =0 and F; = O, where Q is the zero vector or
zero matrix, coincides with the problems considered
in [1] and [2].

2 Solution of the Problem

Let z = y*, Ezy = Elzy"] — Elz]E[y"], By =
Elyy"] - EWEW"), D = Bs. — EoyEjyE,. and
G = E;, — Ewa;yEyz, where A" is the Moore-
Penrose pseudo-inverse of A € R™*™,

We note, that matrix A = {a;;}, where q;; is its
entry for 4,7 = 1,...,m, can always be represented
in the form

A=A, +A_,

where A, = {a;;} with a;;j = 0 for ¢ > j, and
A_= {aij} with a;; = 0 for ¢ < j.
We denote A~ T = (AT)~1.

Theorem 1 Let Ey, and D be positive definite.
Let

By, =LL" and D=MM"

be the Cholesky factorizations [5] for E,, and D,
respectively.! Then

Fy = Els] - F{Ely] - F; E[z], (5)

F) = ([Byy — FYE L") L™ € MT*™  (6)

and
F) =@M ) Mt e M™*™, (7)

' This means that L, M € M7}*™.

Proof We have
J(Fo, F1,Fy) = Jo+ J1 + Jo + J3,
where
Jo = tr{Eas ~ Eny Bl Eya} — [GOD2P, - (@®)
Ji = ||Fo — (E[z] - FE[y] - RE[)|?  (9)
Jo = ||[F1 - (Ewy - FQEzy)E;y]E%2||2 (10)

and
J3 = ||[F> — GDT1DY/?|2. (11)
See [3] and [4] in this regard.
Since Ey, and D are positive definite, we can
write Ej, = E, ! and D! = D™,
Next, let us denote
H = GM™T),, and H_=(GMT)_.
Then
Js = tr(FoM — Hy — H_)(MTF] — HT — HY)
= tr(FRM — H.)(MTF) — HY)
—tr(FlRMHL + H_M'FY)
+tr(H HEY + H_HT + H_HT)
= tr(F’RM — Hy)(MTF{ — HT).
Here
te(H HY + H-HT + H-HT) =0
and
tr(F,MHY + H_MTF]) =0

because we consider lower triangular matrices Fb
only. Therefore

F)=H M '=(GM ) M teMpP™
Similarly, if we denote
Ky = ([Ewy - FQEzy]L_T)+
and
K_=(Ey — BE,JL™")_
then
— T T
Jo = tr(F1L— K ) (L"F — KT)
—tr(F LKL + K_LTF)
+tr(K KT + K_KT + K_KT)
= tr(FL— Ky)(LTF — K) = | i L — K. |,

which implies F; = F.
The equation Fy = F) follows directly from (8).
O



Theorem 2 The error associated with the optimal
filter FO defined by the equation

Foly) = Fy + FYy + Fyz
18
Elllz - F(y)I1%]
1

= tr{Bos — By B~ Eya} — [G(DT)2|2. (12)
Proof The proof follows from (8) — (10) with Fy =
F), Fy = F) and F, = FJ. O
3 Discussion
The Bode-Shannon filter B® [1], [2] is determined
by the equation

B® = (E[zy" L7 1) L1,

Theorem 3 The error associated with the Bode-
Shannon filter is

El|lz - Bo(y)||2] = tr{Eyy — EzvyEilEyw}- (13)

Corollary 1 The error associated with the ﬁllter
FY is less than that of the filter B for ||G(D~1)z||?,

Elllz— B (y)|2] - Blle - F°()|*] = |G(D~Y)2 |12

Proof The proofs of Theorem 3 and Corollary 1
follow from the above. O

Next, Ruzhansky and Fomin [2] provided a filter
R which satisfies the condition

J(R) = min 7 (R) (14)
over all lower triangular matrices R, where
J(R) = E[|W(z - Ry)|"]

and W is a weight matrix. If we denote u = Wz
and P = WR then the problem (14) becomes a
particular case of the problem (1) — (4) with Fy =
@, F1:Pa,ndF2:@.

Therefore the error associated with the filter R°
coincides with (13) if we replace z by u = Wz and
BY by R°. As a result, Corollary 1 is true for the
filter R® as well if change notation.

Corollary 1 demonstrates the advantages of our
approach.

(a) Oserved data.
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(b) Esimate Xp by B°.
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(c) Esimate Xp by F°.



4 Simulation

To illustrate the performanve of the filter FY, we
applied the proposed technique to the filtering of
the known image “Lena” corrupted by a combina-
tion of additive and multiplicative noise. The ob-
served noisy data has been presented by a matrix
Y € R?%6%256 in the form

Y = 250N 4+ 30X N,

where Nj is a matrix with normally distributed en-
tries with mean 0 and variance 1, Ny is a matrix
with uniformly distributed entries in the interval
(0,1), and X € R?6%2% is 3 numerical representa-
tion of the image. The simulation demonstrates a
clear advantage of the filter F© over the filter B°.
For X and Xp to be the estimates by F9 and BO,
respectively, the relations of the errors are

|X — Xg|? — | X — XF|? = 15.2401 x 10°
and | X — Xp|?/|| X — XF|? = 2.4.
5 Final Remark

We have presented a new technique allowing us to
find the optimal non-linear filter F* which guar-
antees better accuracy compared with that of the
known optimal linear filters considered in [1] and
[2]. The important feature of our approach is phys-
ical realizability of the provided filter. The clear
superiority of the filter FO over filters [1] and [2]
has been justified.

Potential applications of the proposed technique
are abundant including, for example, image pro-
cessing [3], [4]; data compression [6]; some areas
in pattern recognition; blind channel equalization;
target detection; optimal nonlinear system synthe-
sis [4], [7], [9] [10], etc. The authors shall focus
further work on extensions of the proposed method
to the problems considered in [4], [6] — [12].
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