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ABSTRACT 

A generalized formula for decision error probability is derived in 
terms of equalizer tap weight coefficients for linear equalization in 
bandlimited channels employing M-ary PAM transmission. The 
generalized decision error probability is valid for any equalizer tap 
weight assignment (non-optimum or optimum state) as well as for 
any equalization algorithm. From the generalized expression, we 
then deduce the formulas for zero -forcing, MSE, and other 
equalizers at optimum state, i.e., when the equalizer is optimized. 
  Two examples are demonstrated. Decision error probabilities 
are obtained for these channels theoretically using the derived 
formulas as well as by Monte Carlo simulations. It is found that 
s imulation results agree excellently with the theoretical formulas. 
 
1  INTRODUCTION 
Extensive works have been devoted in the past to the obtaining of 
decision error probabilities for linear equalizer systems [1-7]. 
Aaron and Tufts gave an error probability based on the conditional 
error probability concept [1]. Saltzberg derived an upper bound for 
the error probability using the worst-case sequence [2]. Lugannani 
evaluated an error bound by the Chernoff inequality [3]. Ho and 
Yeh evaluated the error probability in terms of the first 2k 
moments of the ISI [4]. Glave derived an error bound for 
correlated binary signals [5]. And Yao and Tobin obtained upper 
and lower bounds for the error probability from the theory of 
moment spaces [6]. Most of these results are  either too 
complicated or tedious, or limited to special cases only (e.g., 
binary transmissions only or MSE case only), or just give the 
bounds only. In this work, a generalized formula of decision error 
probability is derived for any linear equalizer system (any 
algorithm) in bandlimited channels employing M-ary PAM 
transmission. The approach is close to but goes beyond that of 
Aaron and Tufts. The resultant mathematical expression will be in 
terms of equalizer tap weight coefficients and valid for any 
as signment of tap weights (non-optimum or optimum state).  

From the generalized formula, we then deduce the formula for 
optimum state (i.e., when the linear equalizer is optimized) and 
apply it to zero -forcing, MSE, and other types of linear equalizers. 
The result shows that the additive channel noise is enhanced at the 
equalizer output by a factor equal to the energy in the equalizer tap 
weights. 
   Next, We present two case examples. First is a theoretical case 
of RC lowpass channel. The second example is a case of 
bandlimited channel with a discrete characteristic. For both cases, 
Monte Carlo simulations are performed for zero -forcing as well as 
MSE equalization, and simulation results are compared with 
theoretical formulas.   

This paper is organized as follows. Section 2 derives the 
generalized decision error probability. Section 3 gives the decision 
error probability for optimized equalizers. We then treat a 
theoretical case of an RC lowpass channel in section 4. Then in 
section 5, we perform the same analysis for a typical telephone 
channel with a discrete-time characteristic. Monte Carlo 
simulations are performed for both cases and are found in good 
agreement with the theoretical findings. And finally, conclusions 
are drawn in section 6. 

 
2 GENERALIZED PROBABILITY OF DECISION 
ERROR FOR DIGITAL SYSTEMS 
We consider a bandlimited channel employing M-ary PAM 

transmission having the discrete response kf , 

LLk ,...,0,...,−= , and let 12 =∑
k

kf for normalization. A 

linear equalizer at the receiving end has tap weights  kw , 

NNk ,...,0,...,−= . With input data kx  and channel noise 

kη , the equalizer output estimate kx̂  is given by 

kkkkk wqxx ∗+∗= ηˆ ,                       (1) 

where kkk wfq ∗=  denotes the cascade of channel and 

equalizer, and kη  is a zero mean Gaussian random variable with 

variance 2/0N . The source data symbols 
∞

∞−}{ kx  takes the 

discrete values with equal probability given by 

     kx  = (2m –1 – M  )d gE ,                      (2) 

where m =1,2,…,M , M = 
n2  with n being the number of bits 

per symbol, and gE  is the energy of a transmitting pulse )(tg . 

It is easily shown that the average energy of kx  is 

gav EdME 22 )1(
3

1
−=  [8]. Taking 1=avE , we get  

      

gEM
d

)1(
3

2 −
= .                           (3) 

It is also easy to show that gEd2  is the distance between 

adjacent data symbols. The estimate error ke  is    

      kkkkkkkk wqxxxxe ∗−∗−=−= η)(ˆ .      (4) 

The last term on the right hand side of (4) kk w∗η  is obviously 

a zero mean Gaussian random variable a variance of 

2/|||| 0
2 Nw , where  

      ∑
−=

=
N

Ni
iw22|||| w                              (5) 

is the squared norm of the equalizer tap weight vector 
T

NN www ],, ,,[ 0 LL−=w with T denoting transpose.  

  Now, define kz  as  

     kkkk qxxz ∗−= .                           (6) 

Since kx  is a discrete uniformly distributed random variable 
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with M possible outcomes, it is obvious from (6) that kz  is a 

discrete uniformly distributed random variable with 
122 ++= NLMD  possible outcomes, say, ,iα Di ,,2,1 L= , 

with probability  

     
D

zP ik

1)( == α ,  Di ,,2,1 L= .                (7) 

For a set outcome of kz , say iα , the estimate error has a p.d.f. 

given by 
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   Therefore, the probability of equalizer decision error MP  for 
M-ary PAM transmission can now be readily obtained as follows: 
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Equation (9) is in fact a generalized formula. It applies to any 
assignment of equalizer tap weights, whether the tap weights are 
in non-optimum condition or optimum condition. It is also valid 
for any algorithm, whether the algorithm is zero -forcing, MSE, or 
least square, or others. However, this formula is not quite 

informative, for the D values of iα  are nowhere to be 

determined. But, later, when we come to optimum conditions, this 
indeterminacy will disappear.  

     There are two limiting cases to be noted. First is when channel 

noise is zero. In this case, (4) and )( kep  respectively reduce to 

     kkkkkkk qxxxxze ∗−=−== ˆ ,  
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where we have used the fact that 
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As a result, the decision error p robability becomes  
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where K  is the number of iα ’s in the set { }Dααα ,,, 21 L  

that are greater than d
gE . 

   Another limiting case is when 0|||| =w . In this case, 

0ˆ =kx , and hence kk xe = , and D possible outcomes of kz  

reduce to only M  outcomes of kx (i.e., 

ggg EdMEdEd )1(,,3, −±±± L ). Hence, upon 

applying (10), 
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or the probability of correct decision is  

     
M

PP MC

1
1 =−= .                           (14) 

Out of M  occasions, 2 occasions will result in correct decision, 

namely, when 
gk Edx ±= , each, when occurring, has a 50-50 

chance of correct guessing by toss of a coin  
. 
3  OPTMIZED EQUALIZERS 
In the previous section, we have given a generalized expression 
for the decision error probability for linear equalization which can 
be applied to non-optimum as well as optimum state for any 
algorithm. But, in real practice, we will only be interested in the 
optimum state, i.e., when the equalizer is optimized. We now 
discuss this optimum situation for various algorithms. 
 
3.1  Zero-forcing equalization 
For zero -forcing equalization, assuming the equalizer has infinite 
length, then the equalizer will be an exact inverse filter to the 

channel [8]. The coefficient kq satisfies the conditions 10 =q  

and 0=kq  for 0≠k , and hence 0
0

=∑
≠k

kq . With these 

conditions, (6) becomes 0=kz , and hence 0=iα  for all i. 

Then, along with (3), (9) becomes  
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Here, we have replaced |||| ow  for |||| w  to indicate that the 

equalizer is now in optimum condition. 
 
3.2  MSE equalization 
For MSE equalization with infinite equalizer length, it is well 
known that [8] 
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where the superscript * denotes complex conjugate. Let )(' ωQ  
be the DTFT (discrete-time Fourier transform) of the sequence 

kq , we know that 

)(')(')(' ωωω WFQ = =
2)(')('

)(')('

0NFF
FF

+∗

∗

ωω
ωω

.  (17) 

  For large received signal-to noise ratios (small 0N ),  

    1)(' ≅ωQ , and 
)('

1
)('

ω
ω

F
W ≅ .                (18) 

Then, we get 10 ≅q , 0≅kq  for 0≠k , and hence 

0
0

≅∑
≠k

kq . This simply means that the MSE equalizer is very 

close to a zero -forcing equalizer. This fact is, of course, well 
known [8]. But it also means the intersymbol interference is 
almost completely eliminated by the equalizer. Using the same 
reasoning for zero -forcing equalization at optimum state, we can 
use (9) along with (3) to obtain an approximate decision error 
probability for MSE equalization at optimum state (for large SNR) 
as  
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When SNR is not large, (19) should be less accurate but 
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nonetheless still reasonably acceptable as will be shown later by 
simulations. 
 
3.3  Other algorithms  
For any algorithm, whether it is LMS (which is a stochastic 
gradient adaptive MSE algorithm), least-squares or RLS (which is 
a weighted least-squares adaptive algorithm), etc., it is clear that 
when SNR is large and the equalizer is in optimum condition, it 
should be quite much an inverse to the channel, which in turn, 

implies 10 ≅q , 0≅kq  for 0≠k . Therefore, by the same 

argument given above, the decision error probability can be given 
by (19).  
   Notice that, neither (15) nor (19) contains the indeterminable 

terms iα . Further notice that, when the additive channel noise is 

absent, it is easily seen that the K  in (12) becomes zero resulting in 
zero decision error. In other words, without the presence of 
channel noise, a linear equalizer can achieve error-free decisions.  
   One more word needs be said about the norm |||| ow . Notice 

that (15) or (19)  closely resembles the error probability for 
M-ary PAM transmission in an infinite bandwidth channel (no ISI) 

[8] except for an additional term of 2|||| ow which is greater than 

1 when SNR is large as shown below. This term accounts for the 
performance degradation caused by noise enhancement by the 
equalizer. For the MSE equalizer, with 

1)(')(')(' ≅= ωωω WFQ  at large SNR, applying Schwarz 

inequality on |)('| ωW and |)('| ωF , we have 
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, or, since |)('||)('/1||)('| ωωω FFW ≠≅ , we can 
exclude the possibility of equality to get 

    1  |||||||| 22 >⋅ fw o .                            (20) 

Since we have 1|||| 22 == ∑
k

iff . Thus 

    1 |||| 2 >ow  or, 1 |||| >ow .                     (21) 

This is to be expected since a performance with ISI cannot be 
better than without ISI. 

However, simulation results show that, when SNR is sma ll, (21) 

becomes untrue and the conditions 10 ≅q , 0≅kq  for 

0≠k  are also violated. When ∞→0N , it can be seen from 

(16) and (17) that both )(' ωW  and )(' ωQ  approach zero, 

thus (18) holds no more. However, from computer simulations, if 
SNR is greater than about 20 dB, (19) will be acceptable. 

 
4  THEORETICAL RC LOWPASS CHANNEL 
We will now discuss a theoretical case, namely, a channel that 
possesses an impulse response of an RC lowpass filter 

     RC/1
)( te

RC
tc −=       0≥t .              (22) 

We choose to discuss this case because of its mathematical 

tractability. Let the transmitting pulse )(tg  be a rectangular pulse 
as  

    
T

tg
1

)( =      Tt ≤≤0 ,                  (23) 

the equivalent channel filter response, )(tf , is then 

)()()( tctgtf ∗= . Now, at sampling instants T , 

2T ,…, we define ),)1(( Tkff k +=   L,2,1,0=k . 

          
After normalization, the final equivalent channel response 
becomes  

     
21 aaf k

k −= ,      L,2,1,0=k ,        (24) 

where 
RCTea /−= .  

Considering MSE equalization, we find 
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and 
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with     )1(
2

)1( 202 a
N
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We can also easily find 
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Notice that, when the received SNR is large ( 0N small), we have 

10 ≅q  and 0≅kq  for 0≠k . 

  Further,  
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When 
0N  is small,  

     
2

2
2

1
1
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a
a
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Notice that 1 |||| 2 >ow  as expected. 

  When using a zero -forcing equalizer, we simply replace 0 for 

0N  in the equations from (25) through (29), and (30) becomes 

exact, then, of course, we also have exactly 10 =q  and 

0=kq  for 0≠k . 

  Now, substituting (30) into (19), and substituting (30) (with 
equal sign replacing the approximate equal sign ) into (15), we 
obtain respectively the decision error probabilit ies for MSE and 
zero-forcing equalizer for our special example. 

  Using the 3-dB bandwidth RCB π2/1=  and a symbol 

period RCBT π== 2/1 , we have 
π−− == eea RCT /

. 
For large SNR, both MSE and zero -forcing equalizers will have 
the energy in the equalizer tap weights given by 
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  Monte Carlo simulation results of decision error probabilities 
for both MSE and zero -forcing equalizations are presented in Fig. 
1 along with the theoretical decision error probability given by 
(15). In the simulations, we have used a finite equalizer length of 
11 for the MSE equalizer with a peak cursor at the center tap. 
From the figure, it is seen that the simulation results are in 
excellent agreement both (15). 
 
5  A TELEPHONE CHANNEL 
We now consider a typical telephone channel with the 
discrete-time characteristic given in Fig. 2 (after PROAKIS [8]). 
Using an equalizer length of 105, we have found the energy in the 
equalizer tap weights for zero -forcing equalization to be 

92.1|||| 2 =ow . For MSE equalization, the equalizer tap weight 

energy is approximately the same when we consider large SNR 
values.  

Computer simulation results of decision error probabilities for 
both MSE and zero -forcing equalizations along with theoretical 
decision error probability are presented in Fig. 3. The theoretical 
decision error probability of (15) is obtained by first finding the 

norm |||| ow  from simulations. It is to be noted that, in this case, 

at low SNR (below about 20dB), the theoretical error probability 
slightly deviates from the actual as can be seen in Fig. 3. This is 
because when SNR is small, the conditions 10 ≅q , 0≅kq  for 

0≠k  do not exactly hold. Thus (19) becomes less accurate. 
Computer simulations also show that, at small SNR, the norm 

|||| ow  is less than unity. The overall effect is to have the error 

probabilities slightly better than the theoretical. 
 

6  CONCLUSIONS 
The generalized expression of decision error probability for any 
linear equalizer in bandlimited channels employing M-ary PAM 
transmission is in the form of a sum of Q functions. When the 
SNR is large and the equalizer is in optimum condition, the 
decision error probability takes a form similar to that of M-ary 
PAM in an infinite bandwidth channel without ISI with the 
exception that the channel noise term 2/0N  is replaced by 

2/|||| 0
2 Now . In other words, the additive channel noise is 

enhanced by a factor equal to the energy in the equalizer tap 
weights. It is this noise enhancement that degrades the equalizer 
performance. Thus, without channel noise, the ISI can be 
completely eliminated. 
      
REFERENCES 
[1] AARON, M. R., and TUFTS, D. W.: ‘Intersymbol interference 

and error probability’, IEEE Trans. Inform. Theory, 1966, 12 , 
pp. 26-34 

[2] SALTZBURG, B. R.: ‘Intersymbol interference error bounds 
with application to ideal bandlimited signaling’, IEEE Trans. 
Inform. Theory, 1968, 14 , pp. 563-568 

[3] LUGANNANI, R. : ‘Intersymbol interference and probability 
of error in digital systems ’, IEEE Trans. Inform. Theory , 1969, 
15 , (6), pp. 682-688 

[4] HO, E. Y. and YEH, Y. S.: ‘A new approach for evaluating the 
error probability in the presence of intersymbol interference 
and additive Gaussian noise’, Bell Syst. Tech. J. , 1970, 49 , pp. 
2249-2266 

[5] GLAVE, F. E.: ‘An upper bound on the probability of error due 
to intersymbol interference for correlated digital signals ’, IEEE 
Trans. Inform. Theory, 1972, 18 , pp. 356-363 

[6] YAO, K. and TOBIN, R. M.: ‘Moment space upper and lower 
error bounds for digital systems with intersymbol interference’, 

IEEE Trans. Inform. Theory, 1967, 22 , pp. 65-74 
[7] SHIMBO, O and CELEBILER, M. I.: ‘The probabilty of error 

due to intersymbol interference and Gaussian noise in digital 
communication systems’, IEEE Trans. Commun. Technol., 
1971,19 , pp. 113-119. 

[8] PROAKIS, J. G.: ‘Digital Communications’ ( McGraw-Hill, 
New York, 1995, 3rd edn.) 

 
Fig. 1  Decision error probabilities for the RC lowpass channel 

 

 
Fig. 2  A discrete channel impulse response 

 

 

 

Fig. 3 Decision error probabilities for the realistic channel of Fig. 2


