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ABSTRACT

In this paper we present a new and robust method to
construct the eye diagram from asynchronous samples of
a digital communication signal. No a priori knowledge of
the bit period is needed. The method uses an approach
based on periodogram estimation which is suitable even
for (highly) under{sampled signals. Random shifts due
to clock errors are also being corrected. We apply this
method to the Bit Error Rate estimation of an optical
signal in an experimental setup.

1 INTRODUCTION

The main motivation for this work comes from a prob-
lem related to the monitoring of optical networks. In
next generations of such networks, optical technology
will be more and more used not only for transmission
but also for switching (in replacement of present electri-
cal cross-connects) of signals. The objective is to alle-
viate the bottlenecks due to capacity and cost of elec-
tronic solutions and to provide a versatile \transpar-
ent" (without opto-electronic conversions) optical net-
work able to carry client signals independently of the
various formats of their electrical frame. However, the
capacity to monitor the quality of the signal along its
path is a required feature to build a manageable net-
work. It is clear that transparent optical networks can
exist only if transparent monitoring methods are devel-
oped. This is the aim of the technique presented in this
paper which successfully measures the main quality indi-
cator of a digital communication system, namely the Bit
Error Rate (BER), without accessing neither the electri-
cal frame of the corresponding signal nor even knowing
its bit rate.
The received signal can be modeled as

x(t) =

+1X
n=�1

an �(t � nTb) + v(t)

where fang is the transmitted symbol sequence taking
only upon two values an 2 f1; Æg with equal probability
where Æ > 0; Tb is the bit period; � is a continuous time
function with compact support representing the \pulse"
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shape; and v is some additive (usually Gaussian) noise.
Assume that some device can sample the instantaneous
optical power, but at a rate signi�cantly lower than the
bit rate, and without any synchronization. The question
one can pose is what useful information, concerning the
quality of the acquired signal, can be extracted from
such samples?
If the signal is highly sub{sampled, then traditional

Signal Processing techniques fail, and the idea that
comes to mind is to use the available samples to build
an eye diagram. This is indeed possible without any in-
formation on the optical signal, as we will show next.
In Section 3, these ideas will applied to the problem of
BER estimation.

2 EYE DIAGRAM RECONSTRUCTION

Given the samples xn = x(tn) we would like to re-
construct the eye diagram, that is, the set of pairs
(tnmodTb; xn), or equivalently ( tn

Tb
; xn). We assume

that the sampling times are given by tn = t0+nTs+wn
where Ts is the sampling period (we may have Ts >>
Tb), and wn is some random perturbation (usually a
random walk) due to clock's lack of accuracy. We also
assume that Ts=Tb is not an integer. We show �rst that
we do not need to estimate explicitly Tb, not even the
ratio Ts

Tb
to construct the eye diagram. Indeed, by de-

noting fb = T�1b and fs = T�1s , we have the following
identities when wn = 0

tn
Tb

mod 1 =
t0 + nTs

Tb
mod 1 = (

t0
Tb

+ n
fb
fs
)mod 1

= (
t0
Tb

+ n(
fb
fs
� round(

fb
fs
)))mod 1

= ("b(� + n�b))mod 1;

where �b = j fb
fs
�round( fb

fs
)j is the aliased digital version

of the bit frequency fb, � is the initial time shift, and "b
is +1 or �1. This means that in order to make the eye
diagram (up to a time reversal) we only need to know
�b.
To estimate �b, it is natural to think of the peri-

odogram method. Unfortunately the bit frequency does
not usually appear clearly on the signal spectrum as we
can see in Fig. 1. The idea is to apply a non linear
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Figure 1: Spectrum of the signal x(t)
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Figure 2: Spectrum of x(t)0:1

function to the signal x(t) to force the bit frequency to
manifest itself. This can be done by applying a function
which emphasizes the transitions between the two levels
(corresponding to 0 and 1 in the transmitted sequence).
Several functions may be used and give satisfactory re-
sults, a possible choice is, for example, f(x) = jxj0:1.
The resulting spectrum, computed by the periodogram
method of the next subsection, plotted in Fig. 2, reveals
clearly the desired (aliased) bit frequency �b. Other
suitable f functions are f(x) = jxj5 or f(x) = 1]�;1](jxj)
for properly selected level �.

2.1 Periodogram

Once function f is selected, we can consider the trans-
formed samples yn = f(xn); n = 0; : : : ; N�1. By divid-
ing the available samples into M blocks, and assuming
for simplicity, N = ML we can de�ne the periodogram
of yn as follows

P (ej!) =
1

M

M�1X
k=0

jYk(e
j!)j2;

where Yk(e
j!) is the Fourier transform of the samples

in the k{th block, i.e.

Yk(e
j!) =

L�1X
m=0

Wm ykL+m e�jm! ;

with Wm being simply a windowing sequence to atten-
uate the Gibbs phenomenon.

2.1.1 Perfect sampling

Under perfect sampling, that is tn = t0+nTs, the mod-
i�ed samples yn may be written as

yn =

1X
k=�1

Ak e
j n !k

b + vn;

where !kb = 2� �kb with �kb being the aliased version
of the harmonic k fb, and vn is the non periodic part.
For large M , by virtue of the Law of Large Numbers,
P (ej !) is approximately E [jY (ej !)j2]. Taking for sim-
plicity Wn = 1 we can then write

E [jY (ej !)j2] =

�����
1X

k=�1

Ak

1� ej L (!k
b
�!)

1� ej (!
k

b
�!)

�����
2

+E

2
4
�����
L�1X
n=0

vn e
�j n!

�����
2
3
5 :

In the last equation, the �rst term in the right hand side
will be dominant for the largest component Ak and for
! = !kb . Let us, for simplicity, assume that vn is mod-
eled as white noise. Then the �rst term is proportional
to L2 and the second only to L. Therefore for suÆ-
ciently large block size L we will be able to distinguish
clearly �b.

2.1.2 Imperfect sampling

In this case, tn = t0+nTs+wn, and we can write yn as

yn =

1X
k=�1

Ak e
j 2k� fb(nTs+wn) + vn:

Let us de�ne 
b = 2� fb and ~Ak(n) = Ak e
jk!bwn . Then

yn =

1X
k=�1

~Ak(n) e
jn!k

b + vn;

which shows that the imperfect sampler introduces ran-
dom phases at frequencies !kb . We concentrate on
! = !b = !1b . Assuming L suÆciently large, so that
contributions from other harmonics are negligible, we
can write

Y (ej!b) =

L�1X
n=0

yn e
�jn!b

' A1

L�1X
n=0

ej
bvn +

L�1X
n=0

vn e
�jn!b :

Here the �rst term is due to the periodic part of the
signal, but it is no longer equal to A1L as it was for the
perfect sampler (wn = 0). Considering the �rst sum as
\signal" and the second one \noise" we can de�ne the
SNR as

SNR(L) =
jA1j

2

�2v

1

L
E

2
4
�����
L�1X
n=0

ej
bwn

�����
2
3
5 :



It is more convenient now, to de�ne the SNR gain
(SNRG) as the improvement obtained by using blocks
of size L instead of size 1, namely

SNRG(L) =
SNR(L)

SNR(1)
=

1

L
E

2
4
�����
L�1X
n=0

ej
bwn

�����
2
3
5 :

If we assume that wn is Gaussian random walk (which is
the most well accepted model in practice), then the steps
wn�wk (for n > k) are centered Gaussian variables with

variance (n� k)�2w . Let us denote � = e��
2

w

2

b then we
can show that

E

2
4
�����
L�1X
n=0

ej
bwn

�����
2
3
5 = L+ 2

X
n>k

Re
�
E [ej
b (wn�wk)]

�

= L+ 2

L�1X
n=1

n e(L�n)�
2

w

2

b

= L+ 2�
(L� 1)� L� � �L

(1� �)2
:

And the SNR gain becomes

SNRG(L) =
1 + �

1� �
+ 2�

1� �L

L(1� �)2
;

which tends to 1+�
1�� as L approaches 1. We therefore

conclude that the gain is larger than 1, however the
improvement saturates. This suggests that, in practice
for �xed sample size, we need to tune the selection of
L. The periodogram of a sequence sampled with im-
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Figure 3: Example of periodogram, M = 20, L = 2316

perfect sample is presented in Fig. 3. The estimate of
the desired frequency, as we can see, is still extremely
accurate.

2.2 Correcting phase shifts

When the samples are not accurate because of clock
jitter (random walk case) we have seen that it is still
possible to obtain accurate estimates of �b. However,
this is not suÆcient for forming the eye diagram. Indeed,
even if we had available the exact �b the eye diagram
would had been as in Fig. 4 because of its sensitivity
to clock errors. Fortunately it is possible to overcome
this problem successfully. The key idea we rely on is the

following, if T is any period then for any time instant t
we have

t

T
mod 1 =

arg(ej
t)

2�

with 
 = 2�
T
. From this we conclude that �nding the

position of a sample in the eye diagram can be viewed
as a synchronization to a reference exponential ej!bt.
We already know that the modi�ed samples fyng have
a strong spectral component at !b, so it is natural to
use them to synchronize the sequence fxng. Since clock
errors are of random walk type, this means that locally
the phase shifts are small, but they accumulate with
time. Therefore if we select a time window of suÆciently
small length say 2K + 1 and compute

Yn =

KX
k=�K

yn+kWk e
�jk!b ;

where Wk is again a windowing sequence, then the re-
sulting eye diagram is given by the pairs

f(�n; xn)g; where �n =
arg(Yn)

2�
:

This method turned out to be very successful, as we
can see from Figs. 4 and 5. It is also worth mentioning
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Figure 4: Eye diagram without phase shift correction
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Figure 5: Eye diagram with phase shift correction

that the transformation yielding the sequence Yn can be
viewed as an FIR �lter of constant coeÆcients

WKe
jK!b ; : : : ; W1e

j!b ; 1; W1e
j!b ; : : : ; WKe

�jK!b :

applied to the transformed data yn .



3 APPLICATION TO BER ESTIMATION

As stated in the introduction, our motivation for this
work was the monitoring of optical networks. The most
important measure of quality of service in optical �bers
and communication systems in general is de�nitely the
BER. The detector consists mainly of a photodiode, fol-
lowed by a decision circuit comparing the received power
to some threshold, and of a synchronization device. We
make an error each time a \0" is above or a a \1" below
the threshold.
If we want to estimate the BER at any point in the

network in a transparent way, that is, with minimum
knowledge and dependence on the actual signal form, we
could use samples of the instantaneous optical power.
The samples can be acquired using a device similar
to the sampling head of a modern digital oscilloscope.
When the samples are not synchronized, some authors
propose to estimate the BER by using histograms (see
[2], [5], [6]). To be able to obtain suÆciently accurate es-
timates of the BER, the histogram needs to be formed
using samples that correspond to time instances close
to decision (the region where the eye is wide open). Se-
lecting such points from asynchronously acquired data
is not an easy task. To avoid this problem it is possible
to use a synchronization device, construct the eye dia-
gram, and then estimate the probability density function
at any time instant in the eye [4]; or alternatively use a
Gaussian model setup [3].
It turns out that synchronization can be performed

by means of software, without any special knowledge of
the signal. The method presented in the previous sec-
tion was successfully applied in this framework, to form
the eye diagram of an optical signal. Experiments were
performed at Alcatel, at a bit rate of 10 Gbits/s and
a sampling frequency of 50 kHz, corresponding to an
under{sampling factor of 200 000. After the reconstruc-
tion of the eye diagram, one selects the points corre-
spond to times close to the decision instant, i.e. where
the eye is most open. BER is then estimated from this
data set, using a Gaussian mixture model. Speci�cally
we consider that samples are i.i.d. with a probability
density being a mixture of eight Gaussians of the form

p(x) =
1

8

8X
i=1

1p
2��2i

exp

�
1

2�2i
(x �mi)

2

�
:

The means fmig and variances f�2i g can be estimated
using the EM algorithm [1]. The selection of eight Gaus-
sians was necessary to account for the inter-symbol-
interference of neighboring bits. Once the sixteen pa-
rameters of the model are estimated, we can compute
the optimal decision threshold and then the BER using
Gaussian statistics.
The results of our method were compared against the

true experimental BER, resulting from a \BER{meter"
device that compares the output of the detector to the
correct transmitted symbol sequence. Figure 6 depicts
the comparison of the experimental BER versus the es-
timated one. We observe a satisfactory agreement be-
tween the two curves.

Figure 6: Comparison of estimated and experimental
BER

4 CONCLUSION

We have developed and experimentally validated a
method for reconstructing eye diagrams and estimating
BER of an optical communication system. The pro-
posed method uses asynchronous and imperfect sam-
pling of the optical signal and required no knowledge
of the bit and sampling rates. A large under-sampling
factor is tolerated thanks to an algorithm particularly
robust against signal and sampling clock jitter. The
application of our results in future transparent optical
networks would confer them a crucial feature, namely
the ability to reliably monitor the quality of the signal
independently of its electrical frame format and/or bit
rate.
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