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ABSTRACT 
 

In this paper, a simple design method is proposed for 
the construction of biorthogonal filter banks with 
perfect reconstruction property. Starting from an 
analysis filter bank that meets certain design 
specifications regarding bandwidth and energy 
concentration, a complete biorthogonal filter bank 
system is constructed. Then, through applying the 
lifting scheme to the other analysis filter bank, its 
response can be greatly improved to meet the desired 
design specifications without impairing either the 
perfect construction property or the other analysis 
filter bank. Illustrative example is given to 
demonstrate the simplicity and efficiency of the 
proposed design approach. 
 
1. Introduction:  
 

Recently [1-3], interest has been given to the use of 
biorthogonal wavelets in signal processing. In 
orthogonal wavelet decomposition, the single 
orthogonal wavelet function )(tψ plays two very 

important roles in signal analysis. First, it is used to 
construct orthonormal basis )(, tkjψ that is used as 

analyzing wavelets to provide certain time-frequency 
resolution. Second, it is used to construct the 
waveform at various octaves of the signal. This 
means that the analysis and synthesis wavelets are 
the same.  Furthermore, it is known that orthonormal 
scaling functions and wavelets have poor time scale 
localization. Most of available QMF designs [4], are 
based on orthogonal wavelets with its drawback of 
having a single scaling function to meet the perfect 
construction property as well as selective linear 
phase response for each of the analysis filter bank to 
meet energy concentration in these banks. The use of 
biorthogonal systems rather than orthogonal system 
gives us a lot of freedom.  Here, we have a pair of 
wavelets )(~,)( tt ψψ , (called duals of each other), 

that are used to share the load; one as an analyzing 
wavelet and the other as synthesizing wavelet. 
In [5], a method was proposed to design biorthogonal 
filter banks. However, it was shown that its overall 
response is not an exact PR one. In [6], as interest 
was focused on image compression, the criterion for 

the design of biorthogonal filter banks was to ensure 
the smoothness of the constructed wavelets.  
In this paper, a simple method is described for the 
construction of a biorthognal basis for any specific 
application. Next, the lifting scheme mathematically 
described in [7-8], has been used to design a 
biorthogonal perfect construction filter banks. In this 
respect, for a specific low pass analysis filter bank  
that meets certain design specifications, the 
corresponding high pass bank that satisfies the 
biorthogonality requirements is hardly a good high 
pass. Next, the lifting scheme is applied to make the 
high pass analysis filter approximates the required 
ideal high pass specifications, without impairing the 
overall PR property, the linear phase property of 
each of the analysis/synthesis filter banks, or the low 
pass analysis filter bank.  Illustrative example is 
given to show the effectiveness of this approach.. 
 
2. Biorthogonal System: 
 

Let the scaling function )(tφ has a dual scaling 

function )(
~

tφ and the associated wavelet function 

)(tψ has the corresponding dual function )(~ tψ . 

Then, to have a biorthogonal system, the following 
conditions must be satisfied 
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In terms of the two scale relations of the scaling and 
wavelet functions and their dual, defined as 
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where the order of (Ho(z), Go(z), H1(z),  G1(z)) , is 
taken to be equal to N .  Eq.(1) is equivalent to  
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At this point, it is worth noting that orthogonal 
wavelet is a special case of biorthogonal system in 

that the dual functions )(~,)(
~

tt ψφ  lie in the same 

plane as that of the functions )(,)( tt ψφ . As a result, 

in orthogonal wavelets, Eq.(2) is satisfied with the 
conditions g0(n)= h0(n), g1(n)=h1(n).  
To relate the biorthogonal filter banks to the perfect 
reconstruction filter banks [4], it is well known that 
to have PR system, the following relations must be 
satisfied 
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where {H0(z), H1(z)} and {F0(z), F1(z)} are the low 
and high pass decomposition and reconstruction 
filter banks, respectively. Comparison with the 
biorthogonal relations of eq.(3), yields 
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3. The Lifting Principle:  
 

Investigation of eq.(3), reveals the following 
remarks: 

1. If in the biorthogonal system  {Ho(z), H1(z), 
G0(z), G1(z)}, the functions [H1(z),G0(z)] are 
kept unchanged while one modifies the other 

parameters to { })(,)( 1 zGzH nn
o  in accordance 

with  
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then, the system { })(,)(),(,)( 11 zGzGzHzH n
o

n
o  

is still biorthogonal for any arbitrary W(z). 

Direct substitution of )(,)( 10 zGzH nn in place of 

)(,)( 10 zGzH in Eq.(3), reveals that the 

biorthogonal relations are satisfied as long as the  
original system Ho(z), H1(z), Go(z), G1(z)} is 
biorthogonal. Alternatively, if in the 
biorthogonal system {Ho(z), H1(z), Go(z), G1(z)}, 
[Ho(z),G1(z)] are kept unchanged while the other 

parameters to { })(,)(1 zGzH n
o

n  are modified to 

       
)z(G)z(W)z(G)z(G

)z(H)z(W)z(H)z(H

1
2

o
n
0

0
2

1
n
1

−=

+= −
       (8)      (12)                         

Then, the system { })(,)(),(,)( 11 zGzGzHzH n
o

n
o  is still 

biorthogona for any arbitrary choice of W(z). 
 

2. As a result of modifying the biorthogonal system 
{Ho(z), H1(z), Go(z), G1(z)},  to the modified system 

)(),(),(),({ 11 zGzGzHzH n
o

n
o }, the new scaling and 

wavelet functions and their duals are  
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It is thus clear that, the scaling function )(tφ is 

unchanged, whereas the dual scaling function )(
~

tφ  

and the wavelet function )(tψ has been changed as a 

result of modifying { })z(G,)z(H n
o

n
1 , and 

subsequently the dual wavelet function changes as a 
result of changing the dual scaling function.  This is 
a very important feature of applying the lifting 
principl to a biorthogonal system.  
Thus, we have the following important theorem, 
known as the Lifting theorem: 
 
Theorem: The Lifting Theorem 
 
Given a biorthogonal system {Ho(z), H1(z), Go(z), 
G1(z)}, then the system  

{ })z(G,)z(G),z(H,)z(H n
1o1

n
o  forms a new 

biorthogonal system if  { })z(G,)z(H n
1

n
o  are chosen 

according to Eq.(7). Alternatively, if 

{ })z(G,)z(H n
o

n
1  are allowed to vary in accordance 

of Eq.(8)., then the resulting system is still 
biorthogonal , for any arbitrary choice of W(z). 
 
4. Generation of a Biorthogonal system for a 
specified symmetrical H  o(z): 
 

For a specified symmetrical H0(z),(i.e. with linear 
phase) of degree N = 2m+1, scaled such that 
H0(1)=1, one can construct a biorthogonal system, as 
follows: 
As H0(z) is symmetric, it turns out that the coefficients of 
the biorthogonal system must be symmetric. As a result, 
the coefficients of G0(z) are obtained through reducing to 
zero even power of z, except the zero power term of 
Eq.(3-a). This results in the following system of (m+1) 
linear equations in (m+1) unknowns: 

tt
0,m0,10,0uu ]5.00..00[y,]g...gg[g,ygB ===   (10)  

and the matrix B can be derived from the coefficients of 
H0(z), [9]. The solution of Eq.(1)), yields the vector gu. 
Consequently, g0 = [ gu ; flipud(gu)]. Once G0(z) is 
determined, H1(z) and G1(z) that satisfy Eq.(3),  can be 
determined from the relations 
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In [9], a complete construction procedure is described for 
a general H0(z). It remains to determine W(z). In this 
paper, these elements are determined to ensure selective 
filter banks with perfect reconstruction PR property, as is 
described in the following section. 
 
5. Design of Biorthogonal Filter Banks: 
 

The proposed approach to design biorthogonal-based 
filter banks, proceeds as follows: 
1- Specify the linear phase function H0(z), that suits 

your design specifications ftom the point of 
view of energy concentration, allowed numbr of 
bits,..etc. 

2- Determine the rest of the biorthogonal system 
H1(z), G0(z) and G1(z) as described in sec.(4), as 
well as the reconstruction filter banks F0(z), 
F1(z) of  Eq.(6). 

3- Apply the lifting theorem of Eq.(8) to H1(z),to 
adjust its response to be a good high pass filter. 
nature Note that W(z-2) in this case, must be 
anti-symmetrical to maintain the linear phase as 
well as the high pass of H1

n(z). Its parameters 
are obtained through optimizing the response of 
the resulting H1

n(z). 
4- As a result of optimizing W(z-2), the updated 

reconstruction filte banks will be 
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It can be easily verified that, the resulting 
biorthogonal filter bank system, is indeed PR with no 
aliasing, i.e. 
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This feature is to be compared with earlier 
biorthogonal designs [5], where their overall T(z) 

deviates subtantially around 
2

π
. 

 
6. Illustrative Example: 

 

Ex.: In this example, we will design a  23th.degree FIR 
filter Ho(z), using Remez exchange algorithm with 
frequency edges [0 0.45 0.6 1], and magnitude [1 1 0 0].  
Fig.(1-a), shows the amplitude response of the 
designed filter together with amplitude response of 
H0(z) and the corresponding H1(z) obtained from the 
biorthogonality conditions of Eq.(3). Next, we apply 
the lifting principle to improve H1(z) while keeping 
H0(z) invariant. The parameters of W(z) are 
determined such that they minimize the amplitude 
deviations of the resulting H1

n(z) over the specified 
frequency specifications. Fig.(1-b), shows the effect 
of applying the lifting theorem with 4,5 variables on 

the response of )(1 zH n , while fig.(2) shows their 

expanded stop and pass bands, respectively. T(z) of 
the resulting filter bank is exactly an ideal delay of 
31 and 33 samples, respectively, while A(z) is 
exactly zero. 
 
7. Conclusions: 
 

A simple method is presented for the design and 
construction of biorthogonal filter bank system, with 
perfect construction property and zero aliasing. The 
main feature of this design lies in the fact that the 
lifting principle can be easily incorporated in the 
resulting design. This means that one can choose one 
of the analysis filter banks freely without any 
binding relation to the other analysis filter bank. The 
parameters of the lifting functions can be chosen to 
satisfy any different design schemes, such as to 
ensure scaling function regularity,[8]. 
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Fig.1  a: Biorthogonal analysis filter banks before lifting 
           b: Optimized lifted biorthogonal analysis filter banks 

Fig. 2.  Expanded pass and stop band behavior of the optimized lifted H1
n(z) for 

             cases of W(z-2) having 4 and 5 variables, respectively 
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Fig.1.b Optimized Lifted Biorth. Sys.
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