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ABSTRACT

Second-order measures of performance are often used for deriv-
ing detectors. Many of these are related or equivalent. In this
paper we propose unifying views of these criteria that depend on
the approach used to design detectors. In the case of deriving un-
constrained detectors, we show that second-order criteria can be
classified into two categories depending on their ability to yield a
one-to-one function of the likelihood ratio. Criteria that satisfy this
fundamental property are logically called relevant criteria. If con-
straints are imposed on the detection structure, two relevant criteria
may lead to non-equivalent detectors in the sense that the receiver
operating characteristic is not the same. We then have to recon-
sider our strategy for partitioning the set of second-order measures
of performance. For practical reasons, this problem is addressed
in the case of linear detection structures. Within this context, we
propose a necessary and sufficient condition under which distinct
criteria provide equivalent detectors. Finally, results are illustrated
by considering well-known second-order criteria.

1. INTRODUCTION

The purpose of detection is to determine to which of two
classes ω0 or ω1 a given observation X belongs. Statisti-
cal detection theories lead to the fundamental result that the
optimum test consists in comparing any strictly monotonic
function of the likelihood ratio to a threshold value [1]. Im-
plementing such a detector may be intractable or impossi-
ble, because of incomplete specification of the underlying
probabilistic model. Amongst the myriad of alternative de-
sign criteria that have been proposed [2], second-order mea-
sures of performance are widely used [3]. Let

S(X)
ω1

≷
ω0

0. (1)

be a given decision rule. These criteria are defined in terms
of first and second-order moments of the decision statistic
S(X), namely

mi , E{S |ωi}, σ2

i , Var{S |ωi}, (2)

with i ∈ {0, 1}. Many contributions can be found in the
literature to justify the use of particular criteria of this fam-
ily, such as generalized signal-to-noise ratio, deflection and
Fisher criterion (see e.g. [3], [4] and [5]).

This paper deals with equivalence between detection
structures designed from second-order criteria. Our pur-
pose is to show that their exist classes of criteria that lead
to equivalent detectors in the sense that the receiver operat-
ing characteristic (ROC) is the same. First, we consider the
case of unconstrained detectors design and we investigate
the family of second-order criteria that guaranty the best so-
lution is the sense of classical decision theories. Next we
address the problem of constrained detectors design. In the
particular case of linear decision rule, we give a necessary
and sufficient condition under which distinct criteria pro-
vide equivalent detectors. Both approaches are illustrated
with well-known criteria such as the generalized signal-to-
noise ratio and mean square error. Finally we present some
concluding remarks.

2. DESIGN OF UNCONSTRAINED DETECTORS
USING SECOND-ORDER CRITERIA

Let Ψ be the family of second-order performance measure
and ψ(m0,m1, σ

2

0
, σ2

1
) ∈ Ψ. Let S(X) be the optimal dis-

criminant function S(X) that results from the optimization
of ψ(m0,m1, σ

2

0
, σ2

1
). The ability of this criterion to pro-

vide an equivalent statistic to the likelihood ratio is not al-
ways guaranteed. In this section, we show that the whole
set of second-order criteria Ψ can be partitioned into two
subsets, as illustrated in Fig.1. The first subset, denoted ΨR,
corresponds to criteria which are relevant in the sense that
their optimization with respect to S(X) yields a one-to-one
function of the likelihood ratio. The second subset ΨNR con-
tains criteria that are non-relevant. These two categories of
criteria are characterized below.
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Fig. 1. Partitioning of the class Ψ of second-order measures.
The subset ΨR corresponds to criteria that yield one-to-one
functions of the likelihood ratio.

2.1. Characterization of relevant second-order criteria

In [6, 7], a necessary and sufficient condition on second-
order criteria has been proposed to guarantee a decision
statistic equivalent to the likelihood ratio. The authors have
shown that ψ(m0,m1, σ

2

0
, σ2

1
) ∈ ΨR if and only if it satis-

fies:

(m1 −m0)
∂ψ

∂σ2

0

∂ψ

∂σ2

1

+
1

2

(

∂ψ

∂σ2

1

∂ψ

∂m0

−
∂ψ

∂σ2

0

∂ψ

∂m1

)

6= 0. (3)

The above equation was obtained by considering that the
decision statistic S(X) resulting from the optimisation of
ψ(m0,m1, σ

2

0
, σ2

1
) must be a strictly monotonic function of

the likelihood ratio L(X). This condition characterizes cri-
teria to be used in practice. In the next section, we determine
to which of the two classes ΨNR or ΨR some well known
criteria belong.

2.2. Case of the mean-square error

Physical interpretation of mean-square error (MSE) justifies
its popularity. Let γ(X) be the desired output of the detec-
tor to be designed. The MSE between current and desired
outputs is [3]:

ψMSE = E{(S(X) − γ(X))2}

= E{S2(X)} − 2E{γ(X)S(X)}+E{γ2(X)}.

There exist many possible functional forms of γ(X). As
an example, one can choose γ(X) = −1 if X ∈ ω0, and
γ(X) = +1 if X ∈ ω1. This is a reasonable choice since
in (1) the discriminant functionS(X) is supposed to be neg-
ative if X ∈ ω0 and positive if X ∈ ω1.

We will now express the MSE as a function of the
conditional moments mi and σ2

i of S(X). The first term
E{S2(X)} in the definition of ψMSE mentioned above is
the second-order moment of S(X). It is given by

E{S2(X)} = P0(σ
2

0
+m2

0
) + P1(σ

2

1
+m2

1
), (4)

where Pi is the a priori probability of ωi. The second term
can be expressed as

E{γ(X)S(X)} = P0E{(−1)S(X)|ω0}

+ P1E{(+1)S(X)|ω1}

= −P0m0 + P1m1.

(5)

Substituting (4) and (5) into the definition of ψMSE gives:

ψMSE = P0(σ
2

0
+m2

0
) + P1(σ

2

1
+m2

1
)

− 2(−P0m0 + P1m1) +E{γ2(X)}. (6)

The term E{γ2(X)} does not depend on S(X), which im-
plies that it is independent of mi and σ2

i . Thus, (6) shows
that ψMSE ∈ Ψ since it depends only on mi and σ2

i . Let us
now study the relevance of this criterion using (3). Calcu-
lating the first order derivatives of ψMSE with respect to mi

and σ2

i yields:

∂ψMSE

∂m0

= 2P0m0 +2P0

∂ψMSE

∂m1

= 2P1m1−2P1 (7)

∂ψMSE

∂σ2

0

= P0

∂ψMSE

∂σ2

1

= P1. (8)

Inserting these results into (3) provides the condition:

2P0P1 6= 0 (9)

This expression is satisfied for all X . Thus the MSE is a
relevant second-order criterion.

2.3. Case of the generalized signal-to-noise ratio

In this subsection, we are concerned with another second-
order criterion that is frequently used in practice: the gener-
alized signal-to-noise ratio (GSNR). It is defined as [3]

ψGSNRα
=

(m1 −m0)
2

ασ2

1
+ (1 − α)σ2

0

, (10)

where mi and σ2

i are defined as in (2), and α is a param-
eter in [0, 1]. The criterion ψGSNRα

is a measure of clus-
tering for the two competing classes ω0 and ω1: it tends
to be large when the between-class scatter (m1 −m0)

2 in-
creases and the within-class scatter ασ2

1
+ (1 − α)σ2

0
de-

creases. Properties of the GSNR have been extensively
studied [3, 2, 4]. In particular, its relevancy has been proved
via ad’hoc approaches. In order to illustrate the generic con-
dition (3), we now propose to verify one more time that
the GSNR is a relevant criterion. Calculating the first or-
der derivatives of ψGSNRα

and inserting them in (3), we
obtain that the GSNR is a relevant criterion if and only if
α(1−α)(m1 −m0)

2 +ασ2

1
+ (1−α)σ2

0
is not identically

equal to 0 for all X . Obviously, this condition is satisfied.



3. DESIGN OF CONSTRAINED DETECTORS
USING SECOND-ORDER CRITERIA

In [7], the authors have shown that the decision statis-
tic S(X) that maximizes any given second-order criterion
ψ(m0,m1, σ

2

0
, σ2

1
) is of the form:

S(X) = −
1

2

∂ψ
∂m0

+ ∂ψ
∂m1

L(X)
∂ψ

∂σ2

0

+ ∂ψ

∂σ2

1

L(X)

+
m0

∂ψ

∂σ2

0

+m1
∂ψ

∂σ2

1

L(X)

∂ψ

∂σ2

0

+ ∂ψ

∂σ2

1

L(X)
. (11)

Note that the condition (3) has been obtained by imposing
the monotony condition on S(X) given above with respect
to the likelihood ratio L(X). In many applications, obtain-
ing S(X) or L(X) may be an intractable problem because
of incomplete specifications of conditional probability den-
sities. Consequently, the strategy that follows is often used
for deriving receivers [2]:

1. selecting a class C of constrained detectors;

2. tempting to pick the detector of C that optimizes a
given measure of performance.

Due to the simplicity and robustness of linear detectors,
many attempts have been made to determine the best one
for a given problem via the optimization of a second-order
criterion. These decision rules are of the form:

S(X) = KTX + s
ω1

≷
ω0

0. (12)

Here, K = [k1 . . . kn]
T represents the direction onto which

any n-dimensional observation X is projected, and s is the
detector threshold. The conditional expected values and
variances of S(X) are given by

mi = E{S |ωi} = KTMi + s (13)

σ2

i = Var{S |ωi} = KTΣiK, (14)

where Mi and Σi are the conditional expected vectors and
covariance matrices of the observation X . Optimization of
S(X) is achieved by equating to zero the partial derivatives
of ψ with respect to K and s. Using the fact that any con-
stant term multiplying toK can be eliminated leads directly
to the following proposition (see [5, pp. 133-4] and [8]).

Proposition 1. Let S(X) , KTX + s be any linear de-
cision statistic. The optimum projection vector K under
which the maximum value of any second-order criteria ψ
is reached satisfies

[ρΣ0 + (1 − ρ)Σ1]K = M1 −M0, (15)

where Mi and Σi are the conditional expected vectors and
covariance matrices of X . The parameter ρ depends on the
criterion ψ as follows:

ρ =

∂ψ

∂σ2

0

∂ψ

∂σ2

0

+ ∂ψ

∂σ2

1

. (16)

In the next section, we use Proposition 1 to give a condi-
tion under which two distinct second-order criteria ψ1 and
ψ2 provide equivalent linear detectors in the sense that their
receiver operating characteristics (ROC) are equal.

3.1. Second-order criteria leading to equivalent linear
detectors

In Section 2.1, we have shown that, in the unconstrained
case, all the criteria that satisfy (3) lead to equivalent detec-
tors since the resulting detection statistic are strictly mono-
tonic functions of the likelihood ratio. However, if con-
straints are imposed on the structure of S(X), two rele-
vant criteria may lead to non-equivalent detectors. The next
proposition considers the case of linear detectors.

Proposition 2. Let ψ1 andψ2 be any second-order criteria.
Optimizing ψ1 and ψ2 leads to equivalent linear detectors
in the sense that their ROC are equal if, and only if,

ρ1 ,

∂ψ1

∂σ2

0

∂ψ1

∂σ2

0

+ ∂ψ1

∂σ2

1

=

∂ψ2

∂σ2

0

∂ψ2

∂σ2

0

+ ∂ψ2

∂σ2

1

, ρ2. (17)

This condition directly results from the fact that s does not
have any effect on the ROC of the detection structure (15),
and ρ in (16) is the only parameter that influences the direc-
tion of the projection vector K.

Note that (15) is also valid for any non-relevant crite-
rion. This implies that two linear detectors, parameterized
by K1 and K2 resulting from the optimization of the two
different criteria ψ1 and ψ2 with ψ1 ∈ ΨR and ψ2 ∈ ΨNR,
can be equivalent. As an example, let us consider the fol-
lowing second-order criterion, which has no tangible physi-
cal meaning: ψ = (m1−m0)

2 +ασ2

1
+(1−α)σ2

0
. Since it

does not satisfy Condition (3), ψ is non-relevant. However,
it leads to linear detectors that are equivalent to those pro-
vided by the GSNR since ψ and ψGSNRα

both satisfy Propo-
sition 2.

3.2. Particular cases of the MSE and GSNR

We shall now determine the classes of second-order criteria
which lead to linear detectors that are equivalent to those
provided by ψMSE and ψGSNRα

. Proposition 1 shows that
the optimum vector KMSE under which a minimum of the
MSE is reached satisfies:

[ρMSEΣ0 + (1 − ρMSE)Σ1]KMSE = M1 −M0, (18)



where the parameter ρMSE given below is obtained by com-
bining (8) and (16):

ρMSE = P0. (19)

Using Condition (17) withψMSE and any other second-order
criterion ψ yields

∂ψ

∂σ2

0

∂ψ

∂σ2

0

+ ∂ψ

∂σ2

1

= P0, (20)

which is equivalent to:

P1

∂ψ

∂σ2

0

= P0

∂ψ

∂σ2

1

. (21)

The equation mentioned above can be solved simply by pos-
ing ψ , ψ(m0,m1, u, v) with u = P0σ

2

0
+ P1σ

2

1
and

v = P0σ
2

0
− P1σ

2

1
. We then obtain that solutions of (21)

are of the form ψ(m0,m1, P0σ
2

0
+ P1σ

2

1
). This result leads

to the following proposition.

Proposition 3. Let ψ be any second-order criteria. Opti-
mizing ψ and ψMSE leads to equivalent linear detectors in
the sense that their ROC are equal if, and only if, ψ is of the
form ψ(m0,m1, P0σ

2

0
+ P1σ

2

1
).

The above condition means that the criterionψ must depend
only on σ2

0
and σ2

1
through P0σ

2

0
+ P1σ

2

1
. This directly im-

plies that the GSNR and the MSE provide equivalent linear
detectors if α = P1.

Consider now the case of the GSNR. Given α ∈ [0, 1],
one can calculate from (15) and (16) the projection vector
KGSNR under which the maximum value of the GSNR is
achieved:

[(1 − α)Σ0 + αΣ1]KGSNR = M1 −M0. (22)

With the same calculation as above, one can determine cri-
teria ψ which lead to linear detectors that are equivalent to
the detector provided by the maximization of ψGSNRα

. The
following result is finally obtained:

Proposition 4. Let ψ be any second-order criteria. Opti-
mizing ψ or ψGSNRα

leads to equivalent linear detectors in
the sense that their ROC is the same if, and only if, ψ is of
the form ψ(m0,m1, ασ

2

1
+ (1 − α)σ2

0
)).

4. CONCLUSION

Second-order criteria are largely used in statistical detec-
tion. Many of these are related or equivalent. Therefore, we
have presented in this paper unifying views of these mea-
sures of performance, depending on the approach used for
designing detectors.

In the case of designing unconstrained detectors, we
have shown that the family of second-order criteria can be
partitioned into two subsets. These subsets correspond to
criteria which are relevant or not in the sense that their op-
timization yields a one-to-one function of the likelihood ra-
tio or not. This has been illustrated by an analysis of the
relevance of the generalized signal-to-noise ratio and mean
square error.

If constraints are imposed on the detection structure,
two relevant criteria may lead to non-equivalent detectors
in the sense that their ROC are different. We then have to
reconsider the partitioning strategy. For practical reasons,
the discussion has been limited to linear detectors. Within
this context, we have proposed a necessary and sufficient
condition under which distinct criteria provide equivalent
detectors. This has been illustrated by determining criteria
which lead to linear detectors that are equivalent to the de-
tectors maximizing the generalized signal-to-noise ratio or
mean square error. An extension of this approach to other
detection structures will be considered in future work.
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