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ABSTRACT

In this paper, we present a classifier fusion solution for
automatic facial expression recognition. We represent
our data using a sorted Principal Component Analysis,
followed by a Linear Discriminant Analysis: the selec-
tion of principal components first performs a dimension-
ally reduction by improving discriminant capacities and
then, a Linear Discriminant Analysis provides a class
representation subspace where new samples can be clas-
sified. Using a fuzzy integral method [7], the classifi-
cation is operated by combining, the outputs of three
classifiers (using Mahalanobis distance, Euclidean dis-
tance and a Bayes rule based criterion). This method
gives, for a new sample, a probabilistic interpretation of
the different classifier outputs to generate a fuzzy mea-
sure vector for each considered facial expression class.
The sample is then classified into class with maximum
fuzzy posterior probability.

1 INTRODUCTION

Face analysis can be divided into several subgroups:
face detection, facial feature extraction, and recogni-
tion (such as face, age, gender, race, pose and facial ex-
pression recognition). The problem of facial expression
recognition has recently emerged. In a general way, an
expression is a combination of the Action Units (AUs)
defined by Ekman and Friesen [5]: a local facial motion
resulting from the compression or relaxation of facial
muscles. A facial expression can be seen in two different
ways: a motion in the face which requires working with
video sequences and face motion analysis tools, or the
shape and texture of the face, using statistical analysis
tools, local filtering or facial feature measurement. The
facial motion has been the first way to be explored by
the researchers: a facial expression can be described by
a global facial motion model [1], or by a set of local fa-
cial motion models [12] that researchers analyze along a
video sequence by tracking facial feature points. In sta-
tistical analysis, we first have to learn what we are look-
ing for: a learning method of the appearance of facial ex-
pressions using an eigenvector decomposition of the im-
age space has been proposed in [10], which build a new

representation subspace where a likelihood measure is
computed to analyze new facial expression images. Lo-
cal filtering methods change the domain of the images,
which can help in feature extraction. Gabor wavelet fil-
ters showed to perform well for facial expression analysis
[9, 3] because they remove most of the variability in im-
ages: they have been found to be particularly suitable
for image decomposition and representation when the
goal is the derivation of local and discriminant features.

2 DATA REPRESENTATION

Multivariate statistical analysis define general tools for
describing, compressing and analyzing data: they allow
to derive a statistical model from a learning set by pro-
jecting its samples onto a lower dimensional representa-
tion subspace. We first perform Principal Component
Analysis (PCA) to reduce the dimensionality of the in-
put data, and then we sort out the principal components
into the order of their importance for the facial expres-
sion problem. Finally, Linear Discriminant Analysis,
applied into this sorted eigenspace, provides a discrim-
inant representation subspace. Both techniques require
precise normalization and registration of faces, that are
described next section.

2.1 Data extraction and normalization

Most of a facial expression information is concentrated
around facial features such as eyes or mouth: including
irrelevant parts (hair, background, ...) can generate in-
correct decisions for expression recognition. We perform
a facial mask extraction by manually positioning four
facial feature points: the pupil centers, the top of the
nose and the middle of the mouth. Two affine transfor-
mations, applied independently on the top and bottom
parts of faces, are used in such a way that these four
points are located in fixed positions in target images.
We then crop right and left lower lateral parts of faces
to only consider their internal area (face shape can be
an information which perturb the recognition process).
Some examples are given in Figure 1.
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Figure 1: Manually extracted facial masks for different
facial expressions (CMU-Pittsburgh database [6]).

2.2 Sorted Principal Component Analysis
PCA is an unsupervised linear feature extraction
method which has been proposed for face representa-
tion, identification, recognition or detection in [10]. Let
S = {x1, · · · ,xN} be the centered learning set con-
taining N d-dimensional facial mask vectors xi, and
C = SST its covariance matrix. PCA [11] seeks the
linear transformation matrix W that maps the origi-
nal space onto a N -dimensional subspace, with N ¿ d,
by factorizing the covariance matrix into the following
form:

C = WΛWT

where W is an orthonormal nonzero eigenvector matrix
and Λ a diagonal eigenvalue matrix with diagonal ele-
ments sorted out in decreasing order (λ1 ≥ λ2 ≥ · · · ≥
λN ). The most expressive vectors derived from PCA
are those corresponding to the leading largest eigenval-
ues: N principal axes (eigenfaces) are used to derive
N -dimensional feature vector y for each d-dimensional
sample x so that: y = WT x.

Selection of the principal components
We propose to make Principal Component Analysis suit-
able for a facial expression recognition task, by select-
ing principal components, in order to construct a low-
dimensional discriminant eigenspace. Such analysis will
be called, from now, a Sorted PCA. PCA returns a set
of N principal components among which we are seek-
ing the K most discriminant, that we call the “opti-
mal” ones. For this, we consider an iterative supervised
feature selection process, described in [4], that progres-
sively selects principal components to construct an op-
timal projection base, by applying the following “step
by step” method:

• During step 1, we seek the optimal principal com-
ponent among the N available.

• During step j, we seek the principal component
(among the N−j+1 remaining) which, when added
to those previously kept, is the new optimal one.

The selection of an optimal principal component is
achieved by maximizing the general class separability
measure, defined by the Fisher criterion F , which can
be expressed as:

F = max
Comp

|SB |
|SW |

where Comp is the set of principal components, SW and
SB are respectively the within- and between-class scat-
ter matrix. Once all the principal components have been
sorted, the final dimension K of the optimal subspace
corresponds to the minimum of the generalization error
rate profile, e.g we seek the rank K for which the ad-
dition of a new component to the optimal set does not
decrease this error anymore.

2.3 Linear Discriminant Analysis

These projected M -dimensional samples are then used
to execute LDA: we determine the mapping which si-
multaneously maximizes the between-class scatter SB

while minimizing within-class scatter SW of the pro-
jected samples, so that the classes are separated as best
as possible. The way to find the required mapping is to
maximize the quantity trace(S−1

W SB). This is done by
solving the eigenvalue problem [11]:

S−1
W SBW = WΛ

Column vectors of matrix W correspond to the Fisher-
faces [2], and the final representation subspace dimen-
sion for a c class problem is (c− 1).

2.4 Representation subspace

We use CMU-Pittsburgh database images [6] to con-
struct a learning set containing N = 210 facial masks
(size 60× 70: d = 4200-pixel vectors): Nc = 35 per ex-
pression and the c = 6 universal facial expressions (sur-
prise, sadness, fear, anger, disgust and joy). We first
perform a PCA, then we sort the principal components
to provide a 55-dimensional subspace, and finally we ap-
ply a LDA to construct the 5-dimensional discriminant
subspace. The projection of this set onto the Sorted
PCA + LDA subspace is shown on Figure 2.

Figure 2: Projection of the learning set onto the subspace
constructed by Sorted PCA plus LDA.
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3 DATA CLASSIFICATION

A statistical analysis of training data allows to gener-
ate a subspace in which a new sample can be projected
and then classified. The usual method consists in deter-
mining a degree of similarity between this sample and
each of the classes. This can be done by measuring a
statistical distance (Euclidean and Mahalanobis) or by
applying classification rules (k nearest-neighbors), to de-
termine the geometrical proximity between the sample
and each class. Bayesian rule based classification also
estimates the posterior probability of each class for a
given sample. Each of these classifiers can supply differ-
ent but useful results: we then have chosen to combine
the outputs of some of them to classify new samples.
A classical method consists in multiplying between them
the ith (i = 1, · · · , c, where c is the number of classes
of the problem: i identify a class) output of each clas-
sifiers. Unfortunately, we should make the hypothesis
that the classifiers are mutually independents. We also
can associate the sample with the class which posterior
probability estimation is the greatest, for every merged
classifiers. This solution is not satisfactory, because the
outputs of different classifiers are not comparable. So,
we make the choice to apply a fuzzy integral method,
initially proposed in [7], which is described in next sec-
tion,

3.1 Principle

The fuzzy integral method makes, for a tested sample, a
fuzzy aggregation of the classifier outputs. If we consider
L different classifiers, for a c-class problem, we define the
decision profile matrix DP as:

DP =




[
µ1

1(x) µ1
2(x) · · · µ1

c(x)
]

[
µ2

1(x) µ2
2(x) · · · µ2

c(x)
]

...
... · · · ...[

µL
1 (x) µL

2 (x) · · · µL
c (x)

]




where µj
i (x) is, for a given sample x, to the posterior

probability, estimated by the jth classifier, of the ith
class: each column i (i = 1, · · · , c) corresponds to a
vector containing L fuzzy measure values for the ith
class.

3.2 Fuzzy integral method

Fuzzy integration is interpreted as searching for the
maximal grade of agreement between the sorted clas-
sifier outputs for class i (objective evidence) and the
expectation, given by L fussy measure values. The prob-
lem is then to find a fuzzy measure vector for each class.
To find this support vector for class i, µD̃

i , we apply the
following algorithm [8]:

1. Fix L fuzzy densities gi, i = 1, · · · , L, such as gi =
1
L .

2. Compute λ > 1 as the only real root greater than
−1 of the equation:

λ + 1 =
L∏

i=1

(1 + λgi)

3. For a given x, sort the kth column of DP (x) in
decreasing order to obtain [di1,k(x), · · · , diL,k(x)],
with dij ,k(x) > dij+1,k(x).

4. Sort, in the same way, the corresponding fuzzy den-
sities gi1 , · · · , giL .

5. Set g(1) = gi1 .

6. For t = 2 to L: g(t) = git + (1 + λgit)g(t− 1)

7. Compute the degree of support for class k as:

µD̃
i =

L
max
t=1

{min{dit,k, g(t)}}

For a specific new sample x, we get a fuzzy measure dif-
ferent for each class, corresponding to a posterior fuzzy
probability estimation.

3.3 Application
In our case, we consider a c = 6-class problem and use
three different classifiers (L = 3), using Euclidean dis-
tance, Mahalanobis distance and the Bayes rule based
criterion (see [11] for details concerning these classifiers).
Each of the classifier outputs have to be written as a
vector w such as:

w = [µ1(x), · · · , µc(x)]

where µi(x) is the posterior probability estimation of
the ith class for the sample x.

The Euclidean D2
euc and Mahalanobis D2

mahal distances
between two samples x and y are given by the formula:

D2
euc = (x− y)t(x− y)

D2
mahal = (x− y)tΣ−1(x− y)

where Σ is the total scatter matrix of the data.
Mahalanobis and Euclidean distance based classifier
outputs are vectors wd = [d1(x), · · · , dc(x)], containing
geometrical distances, which do not correspond to prob-
ability values. We then have to transform these outputs
so that:

wd = [d1(x), · · · , dc(x)] 7−→ w = [µ1(x), · · · , µc(x)]

with µi(x) =
di(x)∑c

j=1 dj(x)

The Bayes rule is based on the minimization of the prob-
ability error, for the cost {0, 1}. It associates a sample
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x with the class ωi if its posterior probability estimation
P (ωi|x) is maximum:

x → ωi if p(ωi)f(x|ωi) > p(ωj)f(x|ωj) ∀j 6= i

If we make the Gaussian hypothesis, the Bayes rule con-
sists in finding the class ωi which maximizes:

gi(x) = ln p(ωi)− 1
2

ln |Σi| − 1
2
(x− m̃i)T Σ−1

i (x− m̃i)

where m̃i and Σi are the estimation of the mean and
total scatter matrix of class ωi.

4 RESULTS

We have tested our method with 373 new samples from
the CMU-Pittsburgh database [6], which do not belong
to the learning set. We first project the samples into
the Sorted PCA + LDA subspace, before recognition
of the facial expressions using single classifiers or their
combination: the results are reported in Table 1. The
tested classifiers are: Mahalanobis distance (C1), Eu-
clidean distance (C2), Bayes rules (C3) and their com-
bination (C4). We observe that the combination of the
three classifiers improves the correct classification rates:
we then take into account all the properties and capac-
ities of correct classification of single classifiers.

Sur. Ang. Sad. Hap. Fea. Dis. Tot.
# 81 41 80 83 53 35 373
C1 98% 91% 93% 86% 82% 73% 87.2%
C2 98% 81% 95% 89% 73% 73% 84.8%
C3 98% 95% 97% 91% 76% 73% 88.3%
C4 98% 97% 97% 93% 84% 73% 90.3%

Table 1: Comparison of correct classification rates, after
the projection of data onto Sorted PCA + LDA subspace,
depending on the classifier: C1 Mahalanobis distance, C2

Euclidean distance, C3 Bayes rule and C4 fuzzy integral
method.

5 CONCLUSION

We have presented a solution for the facial expression
recognition problem, based on the combination of dif-
ferent classifiers using a fuzzy integral method. Results
show that combining different classifiers can improve the
classification accuracy. Such method allows to cover up
some classifier failures and then to improve the classi-
fication accuracy. However, we have to find a compro-
mise between the number of classifiers to combine and
the global quality of classification: this method is more
difficult to implement if we combine a lot classifiers, but
it provides smaller classification error rates.

References

[1] J. N. Bassili. Emotion recognition: the role of facial
movement and the relative importance of upper and
lower areas of the face. J. Personality and Social
Psychology, 37:2049–2059, 1979.

[2] P. N. Belhumeur, J. P. Hespanha, and D. J. Krieg-
man. Eigenfaces vs. Fisherfaces: recognition us-
ing class specific linear projection. IEEE: Trans-
actions on Pattern Analysis and Machine Intelli-
gence, 19(7):711–720, jul 1997.

[3] G. Donato, M.S. Bartlett, J.C. Hager, P. Ekman,
and T.J. Sejnowski. Classifying facial actions.
IEEE: Transactions on Pattern Analysis and Ma-
chine Intelligence, 21(10):974–989, oct 1999.

[4] S. Dubuisson, F. Davoine, and M. Masson. A solu-
tion for facial expression representation and recog-
nition. In ICAV3D, Mykonos, Grece, may 2001.

[5] P. Ekman and W. Friesen. Facial Action Coding
System: a technique for the measurement of facial
movements. Calif.: Consulting Psychologists Press,
1978.

[6] T. Kanade, J. F. Cohn, and Y. Tian. Comprehen-
sive database for facial expression analysis. In Pro-
ceeding of the Fourth International Conference of
Face and Gesture Recognition, pages 46–53, Greno-
ble, France, 2000.

[7] J.M. Keller, P. Gader, H. Tahani, J.-H. Chiang,
and M. Mohamed. Advances in fuzzy integration
for pattern recognition. Fuzzy sets and systems,
65:273–283, 1994.

[8] L.I. Kuncheva, J.C. Bezdek, and R.P.W. Duin.
Decision templates for multiple classifier fusion:
an experimental comparison. Pattern Recognition,
34:299–314, 2001.

[9] M.J. Lyons, J. Budynek, and S. Akamatsu. Auto-
matic classification of single facial images. IEEE:
Transactions on Pattern Analysis and Machine In-
telligence, 21(12):1357–1362, dec 1999.

[10] M. Turk and A. Pentland. Eigenfaces for recogni-
tion. Journal of Cognitive Neuroscience, 3(1):71–
86, 1991.

[11] A. Webb. Statistical pattern recognition. Arnold,
1999.

[12] Y. Yacoob and L.S. Davis. Recognizing human fa-
cial expressions from long image sequences using
optical flow. IEEE: Transactions on Pattern Anal-
ysis and Machine Intelligence, 18(6):636–642, jun
1996.

4


