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ABSTRACT

In multiuser detection, the MMSE(minimum mean
square error) detector is known to be effective for sup-
pressing co-channel multiple access interference. This
method needs training symbols, but recently blind adap-
tive methods have been proposed. In this paper we pro-
pose an adaptive algorithm for blind multiuser detection
that uses a new cost function, and report theoretical and
simulation results about its performance. It is seen that
our new algorithm gives better performance than the
existing algorithm.

1 INTRODUCTION

In a code-division multiple-access(CDMA) system, it is
well known that the main source of performance degra-
dation is the multiple-access interference(MATI). To sup-
press MAI, several methods have been proposed in the
field of multiuser detection. If the training sequences
are available, the MMSE detectors is effective for sup-
pressing MAI Honig et al.[1] have shown that under
a certain linear constraint on the weights of the detec-
tor the solution of the MMSE criterion is equivalent to
that of the MOE(minimum output error) criterion which
does not require the training sequences. Then a con-
strained blind adaptive LMS algorithm is proposed and
its performance analysis is presented by using a stan-
dard method in LMS adaptive filter theory. As another
method, a linearly constrained CM(constant modulus)
type algorithm for multiuser detection is proposed in [2].
However, this algorithm requires the value of the signal
power of the target user and is not perfectly blind. Also,
there is no performance analysis in [2].

In this paper we propose a new blind CM type al-
gorithm with simultaneous estimation of the required
signal power. Then using the general theory for per-
formance analysis of adaptive algorithms based on the
ODE(ordinary differential equation) method in [3], a
theoretical expression of the signal-to-interference ra-
tio(SIR) is derived and is compared with that of the
MOE method. It is seen from the theoretical and simu-
lation results that our new method gives better results
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in terms of the SIR and the convergence speed.

2 BLIND ADAPTIVE ALGORITHMS

Here, for simplicity we use a synchronous single-path
time-invariant channel for K-user CDMA system. The
base-band expression of the received signal r(¢) is

K
r(t) =Y Apbi(t)si(t) + on(t) (1)
k=1

where Ayg,bg(t),sx(t) are the amplitude, the information
bit, the signature waveform of user k, respectively and
n(t) is a white Gaussian noise with unit power indepen-
dent with by (). Discretizing (1) in a chip rate which is
n times faster than a symbol rate, we have

K
r[i] = Apbi[ilsi + onli] (2)
k=1
where r[i],sy,n[i] are n dimentional vectors correspond-
ing to r(t),sx(t),n(t), respectively. The i.i.d. informa-
tion bit by[i] takes 1 with equal probabilities and is
independent, each other (k = 1,---,K). Also, we as-
sume that ||sg|| = 1. The output of a linear detector is
given by

by[i] = sgn(c”r[i]) (3)
where the weight vector ¢ is adjusted to reduce the bit
error rate.

The MOE (minimum output error) adaptive algorithm
in [1] is obtained by minimizing the criterion
MOE(c) = E[(c"r)?] (4)
with the constraint

cl's; =1 (5)

where we assume that user 1 is of interest. The algo-
rithm is written as

cli +1] = cli] — p(c[iJr[)(I - s1s{)r[i]  (6)

with u a small positive step size.



Our new algorithm is based on the following criterion

F(P,c) = E[{(c"r)* - P}’] (7)

where P is introduced in order to estimate the known
signal power A? of user 1. The CM type algorithm in
[2] assumes that A? is known and is not truely blind.
Minimizing (7) with respect to P and ¢, we obtain the
following algorithm

Pli+1] = Pli] + p{(c"[ir[i])* — P} (8)

Plil}(e" [i]r[i])
(I — slsir’)r[z]. (9)

cli+1] = efi] — p- 2{(c"[i]r[i])* ~

Note that (9) satisfies the constraint (5).

3 ODE METHOD AND SIR

One of the most powerful methods for analyzing adap-
tive algorithms is the ODE(ordinary differential equa-
tion) method in [3]. This method has been successfully
applied to the performance analysis of an algorithm for
multiple minor components extraction in [4]. A brief
summary of the method is as follows. Consider a gen-
eral adaptive algorithm

cli + 1] = cli] + ph(cli], r[i]) (10)

where c[i] is a tap weight vector and r[i] is the stationary
input signal vector. The function h(é) is defined by

h(€) = E[h(&,r[i])]. (11)
Then , the ODE is given by

de
dt

An equilibrium point of the algorithm is determined
from

= h(o). (12)

h(c.) =0 (13)
and we put the derivative matrix at this point as

dh(c)
Jdc

C=C..

H(c,) = (14)

Also, we assume that this matrix is stable and the fol-
lowing quantity exists.

(o]

S(e) = 2 Elh(c,r[i])h" (c,]0])]. (15)

i=—o00

Under some regularity conditions, the covariance matrix
of the estimation error ¢[i] — ¢. is asymptotically given
by

El(eli] - e.)(eli] — )] = pY (16)

where Y is a solution of the Lyapunov equation

H(c,)Y +YH"(¢,) = —S(c,). (17)

As a performance measure, we use the SIR defined by

(E ["[i]r [i]|b1[i]])2
SIR = ,1_,00 Var(cT[i]r[i]|b1[i])

(18)

Obviously from (4) and (5), the optimal weight vector
is given by

R_131
C = —— 19
slTR_1 (19)

with the covariance matrix
ZAksksk + 0’1 (20)
Assuming c[i] = ¢.(i = oo, — 0), noting that
E[cT[i]r[i]|b1[i]] = Aiby[i] and
Var(cIr[i]|bi[i]) = ¢ Re, — A2 (21)
we have the asymptotic expression of the SIR as

Al

—L A2 tr[RY
8'11‘R*181 1 + /J/ r[ ]

SIR =

(22)

where we use the fact that Var(cT [i]r[i]|bi[i]) =
Var(e;r[i]|bi[i]) + tr{R - E[(c[i] - e.)(eli] - e)T]}-

4 ANALYSIS BY THE ODE METHOD

Using the standard LMS adaptive filter theory, the per-
formance analysis of the MOE algorithm has been done

in [1]. Here we show that the same result is obtained by
the ODE method. For the MOE algorithm we have

h(cli),r[i]) = —e"[iJr[i)(I — sisT)rli]  (23)

so that R

h(c) = —(I — s1sT)Re. (24)
From (24) the equilibrium point satisfies Rec. =
(sTRey)s; and using (5) it is given by (19). Also we
have

_ 0h(e) _
H = 5 = —(I-ssTR (25)
S(e) = E[h(e,r[0))n" (c,7[0])] (26)

= (I-sisDE[(c"r)*rrT](I — s5,57).

To calculate (26), we need to evaluate the 4th order
moment of . But r is not Gaussian so that (26) will be
a complicated expression.

Here we consider a rather ideal situation where the
signature vector s; is orthogonal to other signature vec-
tors, that is,

slsp=0(k=2,---,K). (27)

In this case, s; is an eigenvector of R and at the equi-
librium point, the output of the detector is

clri] = Ayby[i] + ocTn[i]. (28)



Hence,
S(c) = (1—8181)( TRe,R+2420%s,c!
+24%0%¢, 8T + 20t c.cl) (I — 5,5T)
= (I-s88——_ R(I-s;sT
( 1 1)8¥1R_181 ( 151)
(29)

and the Lyapunov equation is

—(I —s81YRY —YR(I — s;s1)
1
=————(I— s8] )R(I — 5;5]). 30
S{Rilsl( 1 1) ( 1 1) ( )

The solution is given by

1 T
Y = 25TR (I 5157 ). (31)
Substituting (31) into (22), we have the theoretical ex-
pression of the SIR of the MOE algorithm. This expres-
sion coincides with that in [1].
Similarly, we analyze our algorithm (8) and (9) by
the ODE method. Let h(P,¢,7) = (hi(P,7) hi(e,7))T

with
hi(P,r) = (c'r)> - P (32)
ha(c,r) = =2{(c"r)> — P}(c"r)(I — 5187 )r. (33)
Then,

hi(P,¢) = ¢"Re — P. (34)

To obtain hy(P,c¢), we evaluate the 4th order moment
of r. After some calculations we have

hao(P,c) = (I — s157){—2(3¢' Rc — P)Rc

K
—QZA?(cTsi)Ssi}. (35)

It is difficult to find an equilibrium point of (35) so that
we again consider the ideal situation in (27). It is readily
seen that ¢, in (19) and P, = ¢! Re, are the equilibrium
point of ¢ and P in (34) and (35), respectively. Hence
the derivative matrix is given by

ohy Ohy
OP |p_p. € |c—c.
H = oh.
P c
P=P, C=C.
-1 2¢’R
- < 0 —4c*TRc*(I—slslT)R>' (36)
Also,
E[h]  E[hhl] )
S = L 2 37
(E[h2h1] Elhshj] (87)
Ss2 = Elha(c,7)hs(c, T)T]

A(I — s180)E[{(c"r)* - P}?
(Tr)’rrT)(I — sy8T). (38)

To calculate (38), we need to evaluate the 8th order
moment of . Under the ideal situation (27) and the
assumption that the SNR of user 1 A? /o? is sufficiently
large, from (28) we finally have

Syy ~ 16A10%cl e (I — s18])R(I — 5187).  (39)

Let the solution ¥ of the Lyapunov equation (17) with
H in (36) and S in (37) be

Y, }/11 Y12
Y = . 40
<Y21 Y22> (40)

Then using (36) Y a5 is decoupled from others as
H Y 55 + Yo Hyy = —Sa (41)
where Hyy = —4¢! Re, (I — s157)R. Here we have

2410%cT e, (I — s18T)

Yoo = cI Re,

(42)
Substituting this into ¥ in (22), we obtain the theoret-
ical expression of the SIR of our algorithm.

5 SIMULATION RESULTS

To see the validity of the theoretical formulas, some sim-
ulation results are presented. We set N = 31, K = 6,
A1 :1, AQNAE,:\/E, A()‘ :10,0'201 (SNROf
user 1: 20dB) and s; is taken as an M sequence and
s2 ~ sg are generated randomly. The initial values are
c[0] = s1, P[0] = 0. The step size parameter p is taken
as p = 0.0002, 0.0001 and 0.00005. The corresponding
step size for P[i] is set as 32u. Smaller values do not
give good results. The upper bound of the SIR is given
by

_ A7

= i 2"

STR™'s, A
In this case, SIR., = 19.2791 dB. The simulation results
of the SIR are obtained by taking averages over 200 data
sets.

In Table 1 the theoretical and the simulation results
of the SIR at ¢ = 20,000 are presented for the above
three values of u. The agreements are good and our
new algorithm gives much better SIR than the MOE
algorithm.

Fig.1 shows the convergence characteristics of the SIR
for the first 1000 iterations with the same pu = 0.0002.
It is seen that our new algorithm converges much faster
than the MOE algorithm. If we take much larger u for
the latter, it converges much faster but the resulting SIR
becomes much lower. Also, our algorithm becomes un-
stable for p > 0.0004. Fig.2 shows the convergence be-
havior of (¢”[i]r[i])> and P[i]. The difference between
these two quantities is large at the early stage of the
adaptation and becomes small as ¢[i] converges to c..
But from (9) this difference appears in the right hand
side as a time varying step size. This is one of the rea-
sons why our algorithm converges faster.

SIR.. (43)



I 0.0002 | 0.0001 | 0.00005

MOE | Simulation(dB) | 15.9949 | 17.2658 | 18.1400

theory(dB) | 15.8779 | 17.2547 | 18.1494

NEW | Simulation(dB) | 19.0581 | 19.2058 | 19.2375

theory(dB) | 19.0474 | 19.1617 | 19.2200

Table 1: Simulational and theoretical values of SIR.

6 CONCLUSION

In this paper we have proposed a new adaptive algo-
rithm for blind multiuser detection and presented its
performance analysis based on the ODE method. It has
been shown that our algorithm gives better SIR and con-
verges faster than the existing algorithm. It is a future
work to give a more explicit convergence condition on
the step size parameters.
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Figure 1: Convergence behavior of the SIR of MOE al-
gorithm and our algorithm(NEW).
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Figure 2: Convergence behavior of (¢![i]r[i])? and P[i].



