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ABSTRACT

In multiuser detection, the MMSE(minimum mean
square error) detector is known to be e�ective for sup-
pressing co-channel multiple access interference. This
method needs training symbols, but recently blind adap-
tive methods have been proposed. In this paper we pro-
pose an adaptive algorithm for blind multiuser detection
that uses a new cost function, and report theoretical and
simulation results about its performance. It is seen that
our new algorithm gives better performance than the
existing algorithm.

1 INTRODUCTION

In a code-division multiple-access(CDMA) system, it is
well known that the main source of performance degra-
dation is the multiple-access interference(MAI). To sup-
press MAI, several methods have been proposed in the
�eld of multiuser detection. If the training sequences
are available, the MMSE detectors is e�ective for sup-
pressing MAI. Honig et al.[1] have shown that under
a certain linear constraint on the weights of the detec-
tor the solution of the MMSE criterion is equivalent to
that of the MOE(minimum output error) criterion which
does not require the training sequences. Then a con-
strained blind adaptive LMS algorithm is proposed and
its performance analysis is presented by using a stan-
dard method in LMS adaptive �lter theory. As another
method, a linearly constrained CM(constant modulus)
type algorithm for multiuser detection is proposed in [2].
However, this algorithm requires the value of the signal
power of the target user and is not perfectly blind. Also,
there is no performance analysis in [2].
In this paper we propose a new blind CM type al-

gorithm with simultaneous estimation of the required
signal power. Then using the general theory for per-
formance analysis of adaptive algorithms based on the
ODE(ordinary di�erential equation) method in [3], a
theoretical expression of the signal-to-interference ra-
tio(SIR) is derived and is compared with that of the
MOE method. It is seen from the theoretical and simu-
lation results that our new method gives better results

in terms of the SIR and the convergence speed.

2 BLIND ADAPTIVE ALGORITHMS

Here, for simplicity we use a synchronous single-path
time-invariant channel for K-user CDMA system. The
base-band expression of the received signal r(t) is

r(t) =
KX
k=1

Akbk(t)sk(t) + �n(t) (1)

where Ak,bk(t),sk(t) are the amplitude, the information
bit, the signature waveform of user k, respectively and
n(t) is a white Gaussian noise with unit power indepen-
dent with bk(t). Discretizing (1) in a chip rate which is
n times faster than a symbol rate, we have

r[i] =

KX
k=1

Akbk[i]sk + �n[i] (2)

where r[i],sk,n[i] are n dimentional vectors correspond-
ing to r(t),sk(t),n(t), respectively. The i.i.d. informa-
tion bit bk[i] takes �1 with equal probabilities and is
independent each other (k = 1; � � � ;K). Also, we as-
sume that kskk = 1. The output of a linear detector is
given by

b̂1[i] = sgn(cTr[i]) (3)

where the weight vector c is adjusted to reduce the bit
error rate.
The MOE(minimum output error) adaptive algorithm

in [1] is obtained by minimizing the criterion

MOE(c) = E[(cTr)2] (4)

with the constraint

c
T
s1 = 1 (5)

where we assume that user 1 is of interest. The algo-
rithm is written as

c[i+ 1] = c[i]� �(cT [i]r[i])(I � s1sT1 )r[i] (6)

with � a small positive step size.



Our new algorithm is based on the following criterion

F (P; c) = E[f(cTr)2 � Pg2] (7)

where P is introduced in order to estimate the known
signal power A2

1
of user 1. The CM type algorithm in

[2] assumes that A2

1
is known and is not truely blind.

Minimizing (7) with respect to P and c, we obtain the
following algorithm

P [i+ 1] = P [i] + �f(cT [i]r[i])2 � P [i]g (8)

c[i+ 1] = c[i]� � � 2f(cT [i]r[i])2 � P [i]g(cT [i]r[i])
�(I � s1s

T

1
)r[i]: (9)

Note that (9) satis�es the constraint (5).

3 ODE METHOD AND SIR

One of the most powerful methods for analyzing adap-
tive algorithms is the ODE(ordinary di�erential equa-
tion) method in [3]. This method has been successfully
applied to the performance analysis of an algorithm for
multiple minor components extraction in [4]. A brief
summary of the method is as follows. Consider a gen-
eral adaptive algorithm

c[i+ 1] = c[i] + �h(c[i]; r[i]) (10)

where c[i] is a tap weight vector and r[i] is the stationary
input signal vector. The function ~h(~c) is de�ned by

~h(~c) = E[h(~c; r[i])]: (11)

Then , the ODE is given by

d�c

dt
= ~h(�c): (12)

An equilibrium point of the algorithm is determined
from

~h(c�) = 0 (13)

and we put the derivative matrix at this point as

H(c�) =
@~h(c)

@c

�����
c=c�:

(14)

Also, we assume that this matrix is stable and the fol-
lowing quantity exists.

S(c) =

1X
i=�1

E[h(c;r[i])hT (c; r[0])]: (15)

Under some regularity conditions, the covariance matrix
of the estimation error c[i]� c� is asymptotically given
by

E[(c[i]� c�)(c[i]� c�)T ] ' �Y (16)

where Y is a solution of the Lyapunov equation

H(c�)Y + Y H
T (c�) = �S(c�): (17)

As a performance measure, we use the SIR de�ned by

SIR = lim
i!1

�
E
�
c
T [i]r[i]jb1[i]

��2
Var(cT [i]r[i]jb1[i]) : (18)

Obviously from (4) and (5), the optimal weight vector
is given by

c� =
R
�1
s1

sT
1
R
�1
s1

(19)

with the covariance matrix

R = E[rrT ] =

KX
k=1

A2

ksks
T

k + �2I: (20)

Assuming c[i] ! c�(i ! 1; � ! 0), noting that
E[cT [i]r[i]jb1[i]] = A1b1[i] and

Var(cT
�
r[i]jb1[i]) = c

T

�
Rc� �A2

1
(21)

we have the asymptotic expression of the SIR as

SIR =
A2

1

1

sT
1
R
�1

s1
�A2

1
+ �tr[RY ]

(22)

where we use the fact that Var(cT [i]r[i]jb1[i]) =
Var(cT

�
r[i]jb1[i]) + trfR � E[(c[i]� c�)(c[i]� c�)T ]g.

4 ANALYSIS BY THE ODE METHOD

Using the standard LMS adaptive �lter theory, the per-
formance analysis of the MOE algorithm has been done
in [1]. Here we show that the same result is obtained by
the ODE method. For the MOE algorithm we have

h(c[i]; r[i]) = �cT [i]r[i](I � s1s
T

1 )r[i] (23)

so that
~h(c) = �(I � s1s

T

1
)Rc: (24)

From (24) the equilibrium point satis�es Rc� =
(sT

1
Rc1)s1 and using (5) it is given by (19). Also we

have

H =
@~h(c)

@c
= �(I � s1sT1 )R (25)

S(c) = E[h(c; r[0])hT (c; r[0])] (26)

= (I � s1s
T

1 )E[(c
T
r)2rrT ](I � s1s

T

1 ):

To calculate (26), we need to evaluate the 4th order
moment of r. But r is not Gaussian so that (26) will be
a complicated expression.
Here we consider a rather ideal situation where the

signature vector s1 is orthogonal to other signature vec-
tors, that is,

s
T

1
sk = 0 (k = 2; � � � ;K): (27)

In this case, s1 is an eigenvector of R and at the equi-
librium point, the output of the detector is

c
T

�
r[i] = A1b1[i] + �cT

�
n[i]: (28)



Hence,

S(c ) = (I � s1sT1 )(cT�Rc�R+ 2A2

1
�2s1c

T

�

+2A2

1�
2
c�s

T

1 + 2�4c�c
T

�
)(I � s1s

T

1 )

= (I � s1sT1 )
1

sT
1
R
�1
s1

R(I � s1s
T

1
)

(29)

and the Lyapunov equation is

�(I � s1sT1 )RY � Y R(I � s1sT1 )
= � 1

sT
1
R
�1
s1

(I � s1sT1 )R(I � s1sT1 ): (30)

The solution is given by

Y =
1

2sT
1
R
�1
s1

(I � s1s
T

1
): (31)

Substituting (31) into (22), we have the theoretical ex-
pression of the SIR of the MOE algorithm. This expres-
sion coincides with that in [1].
Similarly, we analyze our algorithm (8) and (9) by

the ODE method. Let h(P; c; r) = (h1(P; r) h
T

2 (c; r))
T

with
h1(P;r) = (cTr)2 � P (32)

h2(c;r) = �2f(cTr)2 � Pg(cTr)(I � s1sT1 )r: (33)

Then,
~h1(P; c) = c

T
Rc� P: (34)

To obtain ~h2(P; c), we evaluate the 4th order moment
of r. After some calculations we have

~h2(P; c) = (I � s1sT1 )f�2(3cTRc� P )Rc

�2
KX
i=1

A4

i
(cTsi)

3
sig: (35)

It is di�cult to �nd an equilibrium point of (35) so that
we again consider the ideal situation in (27). It is readily
seen that c� in (19) and P� = c

T
�
Rc� are the equilibrium

point of c and P in (34) and (35), respectively. Hence
the derivative matrix is given by

H =

0
B@

@~h1

@P

���
P=P�

@~h1

@c

���
c=c�

@
~
h2

@P

����
P=P�

@
~
h2

@c

����
c=c�

1
CA

=

� �1 2cT
�
R

0 �4cT
�
Rc�(I � s1sT1 )R

�
: (36)

Also,

S =

�
E[h21] E[h1h

T

2 ]

E[h2h1] E[h2h
T

2
]

�
(37)

S22 = E[h2(c; r)h2(c; r)
T ]

= 4(I � s1sT1 )E[f(cT r)2 � Pg2
�(cTr)2rrT ](I � s1s

T

1
): (38)

To calculate (38), we need to evaluate the 8th order
moment of r. Under the ideal situation (27) and the
assumption that the SNR of user 1 A2

1
=�2 is su�ciently

large, from (28) we �nally have

S22 � 16A4

1�
2
c
T

�
c�(I � s1sT1 )R(I � s1s

T

1 ): (39)

Let the solution ~Y of the Lyapunov equation (17) with
H in (36) and S in (37) be

~Y =

�
Y11 Y 12

Y 21 Y 22

�
: (40)

Then using (36) Y 22 is decoupled from others as

H22Y 22 + Y 22H
T

22
= �S22 (41)

where H22 = �4cT
�
Rc�(I � s1sT1 )R. Here we have

Y 22 =
2A4

1
�2cT

�
c�(I � s1s

T
1
)

cT
�
Rc�

: (42)

Substituting this into Y in (22), we obtain the theoret-
ical expression of the SIR of our algorithm.

5 SIMULATION RESULTS

To see the validity of the theoretical formulas, some sim-
ulation results are presented. We set N = 31, K = 6,
A1 = 1, A2 � A5 =

p
10, A6 = 10, � = 0:1 (SNR of

user 1: 20dB) and s1 is taken as an M sequence and
s2 � s6 are generated randomly. The initial values are
c[0] = s1, P [0] = 0. The step size parameter � is taken
as � = 0:0002, 0:0001 and 0:00005. The corresponding
step size for P [i] is set as 32�. Smaller values do not
give good results. The upper bound of the SIR is given
by

SIR1 =
A2

1

1

sT
1
R
�1

s1
�A2

1

: (43)

In this case, SIR1 = 19:2791 dB. The simulation results
of the SIR are obtained by taking averages over 200 data
sets.
In Table 1 the theoretical and the simulation results

of the SIR at i = 20; 000 are presented for the above
three values of �. The agreements are good and our
new algorithm gives much better SIR than the MOE
algorithm.
Fig.1 shows the convergence characteristics of the SIR

for the �rst 1000 iterations with the same � = 0:0002.
It is seen that our new algorithm converges much faster
than the MOE algorithm. If we take much larger � for
the latter, it converges much faster but the resulting SIR
becomes much lower. Also, our algorithm becomes un-
stable for � � 0:0004. Fig.2 shows the convergence be-
havior of (cT [i]r[i])2 and P [i]. The di�erence between
these two quantities is large at the early stage of the
adaptation and becomes small as c[i] converges to c�.
But from (9) this di�erence appears in the right hand
side as a time varying step size. This is one of the rea-
sons why our algorithm converges faster.



� 0.0002 0.0001 0.00005
MOE Simulation(dB) 15.9949 17.2658 18.1400

theory(dB) 15.8779 17.2547 18.1494
NEW Simulation(dB) 19.0581 19.2058 19.2375

theory(dB) 19.0474 19.1617 19.2200

Table 1: Simulational and theoretical values of SIR.

6 CONCLUSION

In this paper we have proposed a new adaptive algo-
rithm for blind multiuser detection and presented its
performance analysis based on the ODE method. It has
been shown that our algorithm gives better SIR and con-
verges faster than the existing algorithm. It is a future
work to give a more explicit convergence condition on
the step size parameters.
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Figure 1: Convergence behavior of the SIR of MOE al-
gorithm and our algorithm(NEW).
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Figure 2: Convergence behavior of (cT [i]r[i])2 and P [i].


