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ABSTRACT

In general purpose computer vision systems, unsupervised
image analysis is mandatory in order to achieve an automatic
operation. In this paper a different approach to image seg-
mentation for natural scenes is presented. Scale-Space rep-
resentation is used to extract the structure from meaningful
objects in the image. Two different scale-spaces are analysed
in the paper. On one hand Isotropic Diffusion (linear scale-
space) is presented as the basis for an uncommitted front end,
not relying on any special feature of the image. On the other
hand the Total Variation Diffusion (non-linear scale-space)
which makes a special emphasis on edges is also analysed.
A hierarchical decomposition of the image is performed on
the basis of the special characteristics of each scale-space.
Iso-intensity paths will be tracked in the case of linear scale-
space, whereas in the case of non-linear scale-space the evo-
lution of level sets through scale will be tracked. In the
framework of linear scale-space, the use of additional infor-
mation to improve the robustness in the structure extraction
is introduced. Appart from the set of several diffused ver-
sions of the image, a representation of edges through scale is
included to supervise the generation of the hierarchical tree
that represents the image.

1 INTRODUCTION

1.1 Scale-Space

Evidences have been found that the Human Visual System
(HVS) performs some structure analysis on the incoming vi-
sual data [4, 7]. The structure of images has a close relation
with multi-scale representation [4]. One of the clearest ex-
amples of multi-scale (or multi-resolution) data representa-
tion is Scale-Space [14]. Such a representation is composed
by the stack of successive versions of the original data set at
coarser scales. It is assumed that, the bigger the scale, the
less information referred to local characteristics of the input
data will appear. We also impose that general information
applying to large scales will last through scale. Taking that
into account, it is reasonable to think that local and high res-
olution scale information can be related to general and low
resolution information. This will enable us to extract image
structure.

1.2 Scale-Space Flavors
Scale-spaces can be generated on the basis of many dif-

ferent principles. It is just necessary to be able to obtain a
description of image structures through scale. According to
the application, it will be possible to derive the scale stack
from different scale operators. In the literature, different ap-
proaches can be found. General comparisons are available in
[11, 19]. A rough classification might be:

Linear Scale-Space is a one parameter family of images de-
rived from the linear diffusion (or heat) equation [7].

Non-Linear Scale-Spaces relax the constraint of uncom-
mitment in the processing of visual information, but
keep the main properties of a scale-space [9, 10, 12, 16].

Depending on a prior knowledge about the characteristics of
the images to analyse, a non-linear one can be selected. This
will allow to take advantage of some special feature and will
allow to preserve some image particularity.

2 LINEAR SCALE-SPACE

When there is no knowledge about the image, it is not pos-
sible to predict which will be the most advantageous scale-
space. In that case, the best is to stay on the basis of an
uncommitted visual front-end [17] where properties like lin-
earity, spatial shift invariance, isotropy and scale invariance,
will be kept. Such a set of properties is satisfied by the Linear
Scale-Space.

Assumptions made by Lindeberg [17] are based on
the idea of using successive convolutions to generate the
scale-space. Koenderink first realized [7] what should be the
basis for image structure analysis. Under several constraints,
he defined the diffusion equation, given by (1), as the gener-
ator of its scale-space.�������	�
��� � ��� �����	�
���
 (1)

where
�

stands for the luminance of the image which depends
on

�	 , position, and � , scale.
From (1) and from the constraint of using convolution to

generate the subsequent scale levels one finds that the unique
kernel that satisfies both is the Gaussian:

1



�����	�
��� � ����� ���	�� �	���
��! �����	��"
�#$�&% (2)

There is an important additional result. Spatial derivatives
of the Gaussian are as well solutions of the diffusion equa-
tion, and together with the zeroth order Gaussian derivative
they form a complete family of differential operators [17].
From this, multiscale differential analysis can thus be per-
formed.

2.1 Edges Through Scale
The second derivative of the Gaussian is given explicitly

by:')( � 	�
*+� � �-,.0/�132 ,4� 	�5768*95: / 5<;>=@?�ACB � 	 5 6D* 5: / 5<E % (3)

Instead of using it directly, we approximate eq. 3 by using the
Difference of Gaussians ( F)G ( ). To detect edges in scale, the
difference between two consecutive levels of the 0th order
linear scale-space is computed followed by a zero-crossing
detection:F)G ( � 	�� �IHKJ =&?9AML � � 	��ONP� 5: / 5J Q � H 5 =&?9ARL � � 	��ONP� 5: / 55 Q %

(4)
where / JKS / 5 . In Fig. 1 one sees how most important edges
last through scale.

The use of edge representation through scale on the basis
of the second derivative of a Gaussian, is nothing else than
a wavelet representation of the image. In this particular case
the use of a second derivative of a Gaussian is known as the
Mexican Hat wavelet [15]. This is another analogy with the
HVS [4]. Since there are evidences of certain similarities be-
tween some parts of the HVS analysis and wavelet analysis.

Figure 1: Edge representation through scale using DOG (lev-
els 1,4 and 7). 1 sample per 3 octaves (first sample on the first
octave)

2.2 Linear Scale-Space Segmentation: Linking up
through space

The algorithm for the construction of the structure, is
based on the tracking of the iso-intensity paths through scale
[11]. Other algorithms where proposed relying on extrema
[20, 13], but we considered to be more consistent and generic
to search for the iso-intensity paths [11], since image pixels
can not be fully described by extrema.

Figure 2 shows a simple schema of the idea. Levels are
linked in a tree like structure. These links converge through

scale according to the reduction of information imposed by
the low-pass filtering.

The basic problem that arises is the search of parent pix-
els at a larger scale. Vincken [11] proposes as main linkage
criteria the gray level difference between two different pixels
of different neighbor levels. Those pixels having the smallest
difference from a limited spatial neighborhood will be linked.
That means that taking a valid pixel from a determined level
(a pixel who has at least one link from the level below), a
search on a circular area around that point will be performed.
This search area is proportional to the inner scale.

ScaleT"T"TT"T"TT"T"TT"T"TT"T"TT"T"TT"T"TT"T"TT"T"TT"T"TT"T"TU"UU"UU"UU"UU"UU"UU"UU"UU"UU"UU"UV"VV"VV"VV"VV"VV"VV"VV"VV"VV"VV"VWWWWWWWWWWWX"XX"XX"XX"XX"XX"XX"XX"XX"XX"XX"XX"XX"XY"YY"YY"YY"YY"YY"YY"YY"YY"YY"YY"YY"YY"Y Z"ZZ"ZZ"ZZ"ZZ"ZZ"ZZ"ZZ"ZZ"ZZ"ZZ"ZZ"Z[[[[[[[[[[[[\"\\"\\"\\"\\"\\"\\"\\"\\"\\"\\"\\"\]]]]]]]]]]]] ^"^^"^^"^^"^^"^^"^^"^^"^^"^^"^^"^^"^____________```````````aaaaaaaa
aaab"b"bb"b"bb"b"bb"b"bb"b"bb"b"bb"b"bb"b"bb"b"bb"b"bb"b"bb"b"bb"b"bc"c"cc"c"cc"c"cc"c"cc"c"cc"c"cc"c"cc"c"cc"c"cc"c"cc"c"cc"c"cc"c"cd"dd"deeffgg h"hh"hi"ii"ijjkkl"ll"lmm

Original

Figure 2: Hierarchical analysis of the image structure linking
pixels through levels.

This linking procedure [11, 2, 1, 3] from level to level does
not take into account the orientation of structures. It looks
for the nearest most suitable pixel in a circular area. This
is performed independently of the shape of the region where
both pixels (child and parent) belong. This uncontrolled link
search turns into the possibility that pixels can be linked out-
side the region they represent. Although it is locally true that
the most similar pixels in the upper level are very likely to be
the best parents for the child pixel, when search windows are
large, children pixels can find sometimes better fits for their
gray level some distance away from the supposed ideal pixel.
In this situation, when paths evolve through scale, this small
mistake turns into a divergence of a whole branch.

Figure 3 shows the algorithm we propose to reduce the
divergence of paths during linking. When looking for the re-

window is out of the region
Part of the search
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Link not allowed

Figure 3: Wrong linkage problem.

lation between two pixels, we test if they belong to the same
region or blob at that scale. This means that when looking
for linkage, all those links that cross an edge of the second
derivative representation at the same scale level will not be
taken into account. It follows that the area of search for a
parent pixel is modified. Only that area that is included into
the blob of the child pixel is taken into account in the search
window.
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2.3 Segmentation Experiments
2.3.1 Edge Supervision Influence

Edge detection is intended to avoid incorrect linking be-
tween different regions separated by an edge. In Fig. 4 we
see the effect of the use of edges. Both segmentations are
computed using the same parameters, and are segmented on
the basis of the same scale level. The only difference is in
the use of edges to supervise the correct linking.

Figure 4: Comparison of the effect of edge detection on the
segmentation. Segmentation of the image Sergi. Level of
segmentation: /�x � :$y

pixels (left: not using edges, right:
using edges).

An improvement is clearly seen. In the Fig. 4 the most
relevant details are signaled where the use of edges are more
influent. In Fig. 4 (left) we see how part of the head is merged
to the body, and next to the picture on the wall, there is a lit-
tle box, which does not appear on the segmentation without
edges. In Fig. 4 (right), since we use the edges at each scale,
we keep from linking through them, and we success in avoid-
ing the incorrect linking of the head, improving the definition
of the contours. Finally the region that defines the box on the
wall is kept, and not wrongly merged.

2.3.2 Scale Selection

Figure 5: Obtainment of meaningful objects (down) using
the Scale-Space segmentation (regions up). Level of segmen-
tation are left: / x ��z # pixels, right: / x � :{y

pixels.

Image structure gives a hierarchical description of the

scene through scale. As it is explained in section 2.2, in order
to obtain the segments a scale level is selected. This selection
contributes to set the roots of the hierarchical tree that will
represent the whole segments and to implicitly select their
approximate size. In the underlying idea of the present seg-
mentation principle, this selection of roots would be carried
by a high abstraction level layer. This would interpret the
structures obtained from the analysis using the scale-space.

3 NON-LINEAR SCALE-SPACE: TOTAL VARIA-
TION DIFFUSION

As shown in the previous section with the help of numer-
ical simulations, locally supervising image edges improves
segmentation results. This is easily explained in the settings
of our algorithm by the fact that we don’t link pixels that be-
long to different stuctures through scales. A simple way of
achieving the same task in an unsupervised manner would be
to use a nonlinear scale-space in which coherent structures
are preserved by the flow. According to the HVS, edges are
very important primitives in natural images. We emphasize
that they should be conserved in order to avoid wrong link-
ing and this paves the way to using non-linear diffusion as a
natural scale-space candidate.

First studied by Perona and Malik [8] for image process-
ing, non-linear diffusion is realized through a general Partial
Differential Equation (PDE) of the form :���� � � div |~} ��� ' ��� 5 ��)
 (5)

where

' �
is the image gradient and } is a decreasing func-

tion. The idea is to smooth out homogeneous region as in
the linear heat flow, while enhancing boundaries. Interested
readers are referred to [10, 6, 9] for exhaustive reviews of all
associated techniques. One such example, that we will use
in the following, arises when one wants to minize the Total-
Variation norm of the image [5]:�@���

TV � �$��� � ' ��� % (6)

Gradient descent of the previous equation leads to solving :���� ��� div B ' �� ' ��� E % (7)

An example of such a nonlinear flow is shown in Figure 7.
Let us define the isolevel sets of an image

�
as the sets of

pixels satisfying : �!����� 	P
 ��� 	�� �I�0� % (8)

Since the TV flow is an anisotropic diffusion, it will have
a tendancy to smooth regular parts of the image, while pre-
serving its edges. The net effect of this evolution is a sim-
plification of the isolevel sets of the image : weak edges
are being eroded while strong edges will last longer which
means that small uncontrasted objects will be merged into
prominent structures (this can already be seen in Figure 7).

3



Figure 6: Example of nonlinear TV flow.

Actually it can be shown that the isolevel curves of the im-
age, i.e the borders of isolevel sets, will move in the direction
of their normal with a speed proportional to the inverse of the
gradient magnitude [10].

Since edges are preserved in this new scale-space (inter-
preting time � as a scaling parameter), and since simpli-
fication arises at the isolevel sets stage, we can now pro-
pose a segmentation algorithm based on the ideas devel-
oped in section 2.2. We first build the nonlinear scale-space
stack, � � 	P
��� , by letting the image evolve under the TV flow.� � 	�
�� is the solution of (7) at time � with the original im-
age as initial conditions. For each � we then compute the
isolevel sets

� �
. A thorough inspection shows that the num-

ber of these sets quickly diminishes as � increases. Moreover
the edges of natural structures are being automatically han-
dled this way. Then for two consecutive evolution times � J
and � 5 we seek to link the corresponding isolevel sets. Let
�����

be one of these sets at time � J . We simply look at all
the sets

�����
at time � 5 that overlap

�!���
and we link with the

isolevel set whose level value is closer to that of

�����
. In such

a simple strategy, all level sets at time � J are being linked to
parents at time � 5 . We then manage this tree in a way similar
to the linear case. The results of this algorithm are displayed
in Figure 7 and show a definitive improvement with respect
to the heat flow based algorithm.

Figure 7: Example of segmentation using the TV flow.

4 CONCLUSIONS

In this work we have introduced two effective segmenta-
tion algorithms. In the linear scale-space case, the use of
edge supervision improves the results. On the other hand,
the fact that edges are preserved in the diffusion process it-
self (Nonlinear case) is a great advantage of the non-linear
case. Moreover, since the linking procedure is in a very pre-
liminary stage, we consider the results very promising and
very likely to be improved. In addition to the study of an op-
timal linking procedure, the search of other PDEs based on
image processing constraints (affine and contrast invariance
for example) will be very interesting.

References

[1] Niessen W. J.; Vincken K. L.;Viergever M. A. Comparison of multi-
scale representations for a linking-based image segmentation model.
In Proceedings of the Workshop on Mathematical Methods in Biomed-
ical Image Analysis, volume 21-22, pages 263–272, June 1996.

[2] Vincken K. L.; Koster A. S. E.; Viergever M. A. Probabilistic multi-
scale image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(2), February 1997.

[3] Vincken K. L.; Niessen W. J.;Viergever M. A. Blurring strategies for
image segmentation using a multiscale linking model. In IEEE Com-
puter Society Conference on Computer Vision and Pattern Recogni-
tion, Proceedings CVPR ’96, volume 18-20, pages 21–26, June 1996.

[4] Marr D. Vision. Freeman Publishers, 1982.

[5] L.I. Rudin; S. Osher; E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D, 60:259–268, 1992.

[6] Sapiro G. Geometric Partial Differential Equations and Image Analy-
sis. Cambridge University Press, Cambridge, 2001.

[7] Koenderink J. J. The structure of images. Biological Cybernetics,
50:363–370, 1984.

[8] Perona P.; Malik J. Scale-space and edge detection using anisotropic
diffusion. IEEE Transactions Patern Analysis and Machine Intelli-
gence, 1990.

[9] Weickert J. Computer Vision and Applications, chapter Design of Non-
linear Diffusion Filters. Academic Press, San Diego, 2000.

[10] Guichard F.; Moisan L.; Morel J.-M. A review of p.d.e. models in
image processing and image analysis. to appear.

[11] Vincken K. Probabilistic Multi-Scale Image Segmentation by the Hy-
perstack. PhD thesis, Utrecht University, 1995.

[12] Jackway P. T.; Deriche M. Scale-space properties of multiscale mor-
phological dilation-erosion. IEEE Transactions on Patterb Analysis
and Machine Intelligence, 18, 1996.

[13] Lifshitz L. M.; Pizer S. M. A multi-resolution hierarchical approach
to image segmentation based on intensity extrema. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(6), June 1990.

[14] Witkin A. P. Scale-space filtering. In Proc. 8th International Confer-
ence in Artificial Intelligence, Karlsruhe (Germany), 1983.

[15] Mallat S. A Wavelet Tour of Signal Processing. Academic Press, 1998.

[16] Osher S.; Sethian S. Fronts propagating with curvature dependent
speed: Algorithms based on the hamilton-jacobi formalism. Compu-
tational Physics, 1988.

[17] Lindeberg T. Scale-Space Theory in Computer Vision. Kluwer Aca-
demic Publishers, 1994.

[18] Lindeberg T. Scale-space: A framework for handling image struc-
tures at multiple scales. In In Proc. CERN School of Computing, The
Netherlands, September 1996.

[19] ter Haar Romeny B. M. Introduction to scale-space theory: Multiscale
geometric image analysis. Technical report, Utrecht University, 1996.

[20] Florack L. M.; ter Haar Romeny B. M.; Koenderink J. J.; Viergever
M. A. Linear scale-space. Journal of Mathematical Imaging and Vi-
sion, 4, 1994.

4


