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Abstract|Real time ow velocity measurement using ul-
trasound Doppler is a problem of considerable practical in-
terest in industrial and biomedical applications. The prin-

ciple consists in accessing ow velocity through estimation
of Doppler spectrum or frequency. In presence of colored

noise, the commonly used time frequency distributions and
parametric Autoregressive methods become highly inaccu-
rate. We propose in this paper to show via colored noisy

Doppler simulation the suitability of modi�ed parametric
and parametric Wigner-ville techniques in this problem.

I. Introduction

D
OPPLER ultrasound is a noninvasive technique which
has been widely explored to access blood ow in ves-

sels or pipe uid ow in industrial applications, through
the analysis of Doppler frequency or spectrum. In prac-
tice, the precise determination of the Doppler frequency
may sometimes be cumbersome because of various physi-
cal phenomena which introduce uncertainties in the veloc-
ity estimation [1].
Here we will investigate the case of uid ow measure-

ment in industrial pipes. The purpose of this study is to
access the Doppler frequency in order to estimate the ow
velocity pro�le. This problem may be very tricky since, due
to the industrial environment, many noise sources such as
engine noise, machine vibrations,... are present together
with the ultrasound source. In particular, during the mea-
surement process, very strong colored noise with a at
low frequency spectrum is often added to the time varying
Doppler signal . Therefore the conventional approaches are
no longer suitable, since the readability of the spectrum is
compromised. Here we propose an alternative to overcome
these limitations.
The paper presents as alternative modi�ed instrumental

variable and autoregressive Wigner Ville methods to over-
come these limitations. Computer simulations of Doppler
signal with colored noise is used to perform comparisons.

II. TIME FREQUENCY DISTRIBUTIONS FOR

DOPPLER FREQUENCY ASSESSMENT

A ow velocity can be estimated by using ultra-
sound(US) Doppler spectrum. An ultrasound beam at fre-
quency f0 is emitted in the media and the backscattered
beam with a frequency shift fd is recorded. The ow ve-
locity V and the Doppler frequency are linked through the
emitting frequency f0 and angle � between the directions
of ow and US beam (�g.1):

fd =
2V f0 cos�

c
(1)

where c is the wave velocity in the media.
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Doppler signal acquisition principle

The problem of concern here can be stated as follows
: How can fd be accessed via the observed time varying
signal x which consists of xd the actual Doppler signal and
xc a colored noise with a band limited spectrum, that is :

x(t) = xd(t) + xc(t) (2)

Moreover the spectrum of xc is close to xd. In �g.(2) is
shown a typical colored noisy Doppler signal obtained by
introducing colored noise e�ect in Doppler simulation al-
gorithm [?].

A. Parametric Methods

Let x, as above, be the nonstationary analyzed (Doppler)
signal. Following parametric modeling, signal x can written
as :

x(n) =

pX
i=1

ai(n)x(n� i) +

qX
j=0

bj(n)w(n � j) + �(n) (3)
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Power Spectrum Density(PSD)of Doppler simulated sig-
nal(a), PSD of colored Noise (b), Real part of simulated
colored noisy Doppler signal, and its WVD (d)

where w(n) is a white noise and �(n) a noise which will be
discussed below. This is a general well-known ARMA (Au-
toRegressive Moving Average) model. If the parameters
of the ARMA model are correctly estimated, the model is
assumed to �t the physical system better than a simpler
model such as AR. However, most of studies dealing with
Doppler signals use AR model. The main reasons for that
are :
� An ARMA model has its equivalent AR model. Unfortu-
nately this equivalent AR model is not always stable, and
its order is not a �nite number.
� ARMA parameters estimation leads to computations
which are at somewhat cumbersome.
However, the AR model can allow to access to the con-

ventional Doppler spectrum or frequency provided the es-
timation is made under correct hypotheses. Let us recall
the AR model.

x(n) = �

pX
i=1

ai(n)x(n� i) + �(n) (4)

�(k) which represents in fact the "ignorance" one has on
the measurement process.
By de�ning �T (n) = [x(n� p); :::; x(n� 1)] and �T (n) =

[�ap(n); :::;�a1(n)]. Eq( 4) can then be written as :

x(n) = �T (n)�(n) + �(n) (5)

An important point is that : commonly �(k) is assumed
to be white noise, particularly for classical Doppler fre-
quency estimation. From eq.(4), the time-varying Power
Spectrum Density (PSD) (distribution) is given by :

PSDx(n; f) =
�2

j1 +
Pp

k=1 an(k) exp(�2j�kf)j
2

(6)

where �1=2 � f � 1=2 and �2 is the energy of the noise �.

In order to estimate the parameters to be used in eq.(6),
for example , Instrumental Variable (IV) algorithm can be
used [3],[4], [5],[9].

An error source in parametric Doppler spectrum or fre-
quency estimation is linked to the choice of model order
(number of parameters). For quite complicated Doppler
signal like colored Doppler signal the number of parame-
ters may change during the observation duration. On one
hand, if the number of chosen parameters very low (un-
dermodelling), the estimated parameters are biased. On
the other hand, if the number of chosen parameters is very
high (overmodelling), extra parameters generate extra fre-
quency components in the spectrum which yields inaccu-
rate frequency estimation. This problem has been solved
using test on standard criteria such as Akaike information
or Final prediction error [6]. The principle of this test con-
sists in computing, for a set of model orders, the values of
the criterion. The order for which the criterion achieves
an optimum is assumed to be the model order. Unfortu-
nately the test is usually performed only once (often at the
beginning of the parameters estimation process) regardless
of the possible changes of the model order. In order to ac-
counted for the possible model order changes,we propose
to use a factored form [7], [13] of the covariance matrix
UDV H method. The following method which was intro-
duced in [8], is a complex-data form of the recursive real-
data method developed by Niu et Fisher [10]. Consider the
model represented by the expression (5).
One can de�ne an augmented regression vector 'T (n) =
[x(n �M); :::; x(n � 1); x(n)] = [�T (n); x(n)] and an aug-
mented instrumental vector �T (n) = [z(n �M); :::; z(n �
1); z(n)] = [ T (n); z(n)] where z(n) is de�ned as by
 T (n) = [z(n � p); :::; z(n � 1)]. The dimension of the
regression (and instrumental) vector is d = M + 1. Note
that the choice of M is arbitrary. Then one can de�ne :

C(n) =

2
4 nX
j=1

�(j)'T (j)

3
5
�1

d�d

(7)

C(n) can be decomposed in the form of UDV H , that is :

C(n) = U(n)D(n)V H(n) (8)

where H denotes the hermitian transpose, U is an upper
triangular matrix with all diagonal elements equal to unity.

U =

2
666666664

1 �̂21(n) ::: �̂p1(n)

1...
::: �̂p2(n)

1.. .

...

0 �̂pd�1(n)
1

3
777777775

(9)

V is also a upper triangular matrix with all diagonal
elements equal to unity.



V =

2
66666664

1 �̂21(n) ::: �̂p1(n)
1.. .

::: �̂p2(n)

1...

...

0 �̂pd�1(n)
1

3
77777775

(10)

Matrix D is a diagonal matrix with the form

D�1(n) = diag[J(0); J(1); :::; J(d)] (11)

It can be shown [10] that

J(n) =
nX
j=1

[y(j)� �T �̂(j)][z(j)�  T �̂(j)] (12)

The minimum diagonal element of D�1 gives the model
order, since the a-priori order M can be chosen as high
as possible. The above decomposition can be performed
recursively (at each time).

From eq.(7) it follows that

C(n) = [C�1(n� 1) + �(n)'T (n)]�1 (13)

One can then de�ne the variables fM = UT (n � 1)'(n)
and gM = D(n � 1)f�M related to the regression vector;
and fI = V T (n � 1)'(n) and gI = D(n � 1)f�I related to
the instrumental vector. The asterisk denotes the complex
conjugate. Finally one can de�ne �(n) = 1 + fTMgI
Thus, at the rank one update relation, the matrix C(n)

can be expressed:

C(n) = U(n)D(n)V H(n) (14)

= U(n� 1)

�
D(n� 1)�

gIg
H
M

�(n)

�
V H(n� 1)

The bracket part of C(n) is decomposed trough a series of
orthogonal transformations to obtain:

D(n� 1)�
gIg

H
M

�(n)
= �U(n) �D(n) �V H(n) (15)

C(n) = U(n� 1) �U(n) �D(n)
�
(V (n� 1) �V (n)

�H

This relation recursively update the U(n�1) and V (n�1)
matrices to U(n) and V (n). With this augmented struc-
ture, a multiple model structure is produced. The model
parameters are calculated in the above diagonal of the
columns in U(n). The parameters related to the instru-
mental model (say �(n)) are available in V (n). The in-
verse of the generalized loss function J(n) is available in
the diagonal of the matrix |D(n)|. In expression (13),
a forgetting factor � can be introduced to follow the non
stationarity of the signal.

B. Hybrid Methods

This method uses both parametric AR and WVD com-
putations. It will be referred to as AR Wigner Ville Dis-
tribution or AWV. In fact, the WVD and it variants are
Fourier transforms of an adequate kernel. So for frequency
modulated signal such as a Doppler signal, an improvement
in accuracy is expected by replacing the Fourier transform
of the bilinear kernel by high resolution methods [12] such
AR methods presented above. The principle of the compu-
tation is following:
� compute the bilinear kernel from the analytical signal.
� estimate, each time, the AR parameter �tting the real
part of the kernel (since the kernel has Hermitian symme-
try, the imaginary part does not contain additional infor-
mation) similarly to eq.6.
� compute the cross-section of the WVD using eq.(6)

III. Frequency estimation for velocity

measurement

The principle of the Doppler velocity measurement is
to access the frequency components of the Doppler sig-
nal. Many frequency estimators have been widely explored.
These estimators can be classi�ed into two groups : the fast
ones, which are directly based on the temporal signal such
as the derivative of the signal phase [11] or the autocorrela-
tion of the signal [14],[15],[16]. These estimators are known
to be highly sensitive to (even little level of) noise. The
other ones, more accurate but computationally heavy are
based on a function of the signal. Here we consider estima-
tion based on time frequency distributions since they have
been shown to be more accurate [17],[18]. The frequency
estimation commonly used to access Doppler ow velocity
is the peak frequency ) of the Time Frequency Distribution
(TFD), which is de�ned by:

fm(t) = argmax
f

(W (t; f)) (16)

where W (t; f) is the TFD. This estimator is very sensitive
to the nature of the noise.
It is the value of f so that W (t; f) is maximum. This

estimator may be sensitive to local maximum in the TFD.
So care must to taken to use it. When parametric TFD
are used, a pole frequency estimator can be used to ac-
cess the velocity. Considering expression(6), PDSx can be
rewritten as :

PSDx(n; f) =
�2

j1 +
Pp

k=1 an(k)z
kj2
z=exp(�2j�f)

(17)

or by using the poles zk (that is the roots of the denomi-
nator ) of eq.(17)

PSDx(n; f) =
KQp

k=1 jz � zkj2z=exp(�2j�f)

(18)

where K is a constant related to �2. Thus PSDx is the
sum of �rst order elementary TFD, the peak frequency of
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Relative Mean Square Error of the frequency estimates us-
ing 50 realizations. The x-axis show the distribution names.

which is given by :

fk(t) =
fe

2�
arg(zk) (19)

These frequencies fkmust be sorted to access ow velocity

IV. Results and Discussion

In �g.(3), we show the root mean square error (rmse) for
standard pseudo wigner ville (PWV) method and the two
proposed methods. As it can be seen the new techniques
are better as far as rmse is concerned. More simulation
and industrial signals results con�rming this preliminary
observations will be shown during presentation.

V. Conclusion

In this paper the speci�c problem of Doppler spectrum
and frequency estimation in presence of colored noise with
at spectrum has been addressed. Due to the speci�c na-
ture of noise, two relevant techniques are proposed as al-
ternative to unsuitable classically used techniques.These
techniques outperform the classical ones.
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