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ABSTRACT

This paper introduces the application of third order cyclic statistics for
vibration signals in rotating machinery. It is shown for the first time
that these vibration signals display third-order cyclostationarity under
some conditions. A model of signals modulated in amplitude and
phase is used in order to compute the cyclic bispectrum, a third-order
cyclic statistical parameter, in the frequency domain. The
interpretation and the estimation techniques of this cyclic bispectrum
give better understanding of the application of cyclic statistics to
mechanical systems. The ambiguity concerning the use of moments or
cumulants for the estimates is discussed. Moreover, the difference
between them is illustrated with industrial gear signals. Application to
the diagnosis of spalling in gear teeth of a U.S. Navy helicopter
gearbox demonstrates the effectiveness of this new parameter for a
good diagnosis.

1 INTRODUCTION

Many conventional statistical signal-processing methods treat random
signals as if they were statistically stationary and ergodic. These
notions are appealing because they give the possibility to estimate
parameters from a single realization. However, this assumption is a
mathematical idealization which, in some cases, may be valid only as
an approximation of the real situation. Thus, it can exclude many real-
life non stationary signals. More particularly, there is a subclass of
non stationary signals called cyclostationary signals. These signals are
characterized by a periodic variation of their statistical parameters.
The importance of this class is that it matches the physical behavior of
signals in several domains such as communication signals, and
vibrating mechanical systems [1].

The theory of estimation of periodically correlated processes, i.e.
second order cyclostationary, was introduced first in [2] and exploited
with success in several domains especially in the diagnosis of gear
faults [1] . For higher orders, the general theory of cyclic statistics has
been developed in both the stochastic and fraction of time (FOT)
probability frameworks. An important statistical parameter in the
study of cyclostationary properties is the nth-order cyclic spectrum.
Estimators for this cyclic spectrum have been proposed in [3] and [4] ,
respectively, for continuous time and discrete time signals. In [3], the
whole study is based within a deterministic framework by using the
fraction of time probability. Alternatively, in [4], estimators are built
for real signals in a stochastic framework. Their estimation depends
primarily on the generalization of the nth-order periodogram
suggested in [5]. Applications of higher order cyclic statistical signals
are limited to a few areas. In [6] and [7], an application of cyclic
statistics has recently been proposed concerning the estimation of
parameters of modulated signals.

This paper is concerned with the third-order cyclic
characterization of vibration signals in rotating machines. The paper is
organized as follows. After presenting a general model of a typical
vibration signal, a study of the cyclic properties of this model, and an
interpretation of the cyclic bispectrum, the third order cyclic spectrum,
are proposed. Estimation techniques are reviewed and discussed in
section 3. Based on the model developed, the higher-order
cyclostationarity of a gear signal is demonstrated in section 4. To
illustrate the use of  these techniques, applications of the cyclic
bispectrum, based on moments and cumulants, are also proposed in
section 4. The application concerns industrial vibration signals from a
helicopter gearbox of the U.S. Navy. Moreover, the possibility of the
use of the cyclic bispectrum for diagnosis is discussed. Conclusions
are drawn in section 5.

2 SIGNAL MODEL

A large number of vibration signals can be modeled as the sum of
harmonically related exponentials modulated in amplitude and phase.
They are modulated by the complex envelopes )(tAn :
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2.1 Analysis of the cyclostationarity of the signal

• Mathematical Expectation- First Order Cyclostationarity
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If the complex envelope ))(exp()( tjAtA nnn φ= , i.e. phase
modulation only, the mathematical expectation will be equal to :
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the signal )(tx is first-order cyclostationary if the probability density
of )(tnφ is periodic in time (including the case of  stationarity).

• Autocovariance function – 2nd order cyclostationarity
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where ),(, τtC A
mn− is the intercovariance function of the envelopes of

)(* tAn  ( )(tA n− if )(tx is real ) and )(tAm .
Taking into account the expression of envelope, the autocovariance
function will be :
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where ),( τφφ +ttB
mn

is the autocovariance function of ))(exp( tj nφ .
Similarly to the first-order cyclostationarity, the signal is 2nd order
cyclostationary if )(tnφ is wide sense 2nd order cyclostationary. This

includes the cases of )(tnφ  being periodic and stationary.

• Third-order cumulant- Third-order Cyclostationarity
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where ),,( 21,, ττtC A
pmn− is the third-order inter-cumulant function of

the envelopes )( and )( ),(* tAtAtA pmn .
After some computation, the third-order cumulant will be found equal
to :
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is the third-order cumulant of  ))(exp( tj nφ .

We notice that the probability density, the conjoint probability density
and ),,( 321 φφφφφφ pmn

f of  )(tφ must be periodic or stationary,

i.e.  )(tφ must be third-order wide sense cyclostationary to assure the
third-order cyclostationarity of the signal.

2.2 Remarks about the nth-order Cyclostationarity

We explain in this paragraph the reason for the use of cumulants to
characterize  the cyclostationarity of )(tx . There are two estimation
methods based respectively on the use of moments or cumulants. The
first approach deals with the periodicity of the nth-order moment.

),,,,( 121 −nnx tM τττ K . If a such case is satisfied, this moment can be
decomposed into Fourier series as shown :
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Every individual component of the sum is called an nth-order sine
wave [3]. It is often the case that an nth-order moment sine wave is
impure in the sense that it is made up in part or wholly of  products of
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various values of k. This property results from the properties of the
nth-order moments.

To purify the nth-order impure sine waves, we must extract
all the impure terms coming from lower orders. This is realized by the
use of cumulants in contrast to moments and therefore represents the

second approach [3]. For 3 and 2=n , the purification is easy, all
products of first–order moment sine waves can be subtracted from the
second-order moment sine waves to obtain the pure second-order sine
waves. The use of the nth-order cumulants can therefore characterize
specifically the nth-order properties without the influence of lower
orders. In practice, the calculation and subtraction of a synchronous
average, first-order moment, is sufficient to compute the second and
third-order cumulants.

2.3 Interpretation of third-order cumulant spectra

In this paper, we have chosen to be limited to the third-order  because
orders higher than 3 involve a higher cost of calculation and give
difficulties in the representation and interpretation of results.
The computation of the third-order cyclic cumulant of the modulated
signal )(tx gives rise to the following expression :
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where PfN = with P  the period of cyclostationarity and
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If we take into consideration the fact that the statistics of the
envelopes have a small fluctuations, let us introduce new variables :

s-plmns =−=  , . The cyclic cumulant will be simplified into the
following expression :
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The third-order cumulant spectrum, often called the cyclic bispectrum,
can be deduced from (10)
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Therefore, the interpretation of the cyclic bispectrum is the following :
for the cyclic frequency Tk / and near the frequency pairs,
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)( and )( ),(* tAtAtA pmn . For the cyclic frequencies ,lNk =  we obtain

the interbispectrum ),( 21,, λλA
pmnS− .

Sometimes, in the literature  [8],  the term bispectral correlation
is used in the context of third-order cyclostationarity. Let us use the

notation ),( 21 ννB . It is equal to )/(),,( 213 TkS
k

x −∑ αδννα , i.e.

the dimension of its support which embodies ),,( 21 ννα is three.
However, the dimension of the cyclic bispectrum is two, because it is
specific for one cyclic frequency.

3 ESTIMATION TECHNIQUES FOR CYCLIC
SPECTRA

Several methods exist for the estimation of higher-order cyclic
spectra. Some of them are based on the computation of the Fourier



transform of a windowed estimate of the higher-order cyclic
cumulants. In this paper, we will not focus on these methods. Other
methods issuing from [3] and [4], concern particularly the estimation
of higher-order statistics for non stationary signals. For these methods,
two estimators are proposed : nth-order cyclic spectra of  moments
and of cumulants.

3.1 Estimator of nth-order cyclic spectra of moments :

The method of estimating the cyclic spectra of moments is based on
the nth-order cyclic periodogram of )(tx  defined by :
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It is shown in [3], [4] that the nth-order cyclic periodogram
is a sample estimator of nth-order cyclic spectra of moments for all
f except those that lie on a submanifold αD .This submanifold is the
domain of the vector f such that every partial sum of its components
gives a cyclic frequency of lower order than n. Such estimators are
unbiased; however, they are inconsistent. A suitable smoothing in the
frequency domain can make the estimators consistent and resolve the
problem of estimation on the submanifold.

3.2 Estimator of nth-order cyclic spectra of cumulants :

In this paragraph, we  recall that moments and cumulants share

common frequency points away from the submanifold αD .
Therefore, the cyclic periodogram is a potential estimator for
cumulant spectra at least away from αD . The idea is to estimate the
cyclic periodogram for all frequencies not lying on αD . Thus, we can
obtain a correct estimation of the cyclic spectra of cumulants for these
harmonic frequencies. To obtain the remaining values on the
submanifold αD , two techniques are used, in the frequency domain
and in the time domain.

For the frequency domain, the nth-order cyclic periodogram
is constructed, masking it by a special function which is equal to one
except for those frequencies that lie on the submanifold and in the end
convolving with a multidimensional smoothing window. For the time
domain, unlike the frequency-smoothing method, the time-averaging
method needs an additional modification which is an interpolation
between values near to the submanifold αD , in order to estimate the
nth-order cyclic cumulant spectra for frequencies on αD .

 Another simple way of formulating these techniques
concerns the second and third order cyclostationarity. The idea is to
extract the pure frequencies directly from the signal and not after
computing the cyclic periodogram. As mentioned in paragraph 2, the
difference between moments and cumulants for these two orders, is
the first-order cyclostationary.  By consequence, we can simply
estimate these frequencies and extract them directly from the signal.
Recently, [9] introduced the median-based methods for the nth-order
cyclic spectrum in order to avoid the problems mentioned above.

4 APPLICATIONS TO GEAR SIGNALS

Several studies using the cyclic statistics of gear signals have been
developed. It was shown in [1] that vibration signals measured on gear
systems display second-order cyclostationarity. In [10], signal
processing methods are developed to separate first-order from second-

order components of the signal. In this section, we intend to focus on
the third-order cyclostationarity of gear signals. The gear signal fits
the model in section 1 with en nff =  where ef is the meshing
frequency. By using (7), we can see that the meshing signal is third-

order cyclostationary if ),,( 21,, ττtC A
pmn−  is periodic. This means that

the meshing harmonics  (at least three between them) must be
correlated and periodic. This condition is satisfied for real signals.
In order to illustrate the third-order cyclostationarity of gear signals,
applications of the cyclic bispectrum are presented here for industrial
systems. Signals consist of vibration data recorded from the aft main
power transmission of a U.S. Navy CH-46E helicopter. The
frequency-smoothed cyclic biperiodogram is used for computation.
The size of FFT used is equal to 1024.

4.1 Cyclic bispectrum of moments

In this example, we have used the cyclic bispectrum based on
moments, i.e. impure estimation. Fig.1 represents the magnitude of the
cyclic bispectrum for 

1r
f=α , rotating frequency of the gear wheel,

of a helicopter vibration signal resulting from a spalling fault
(established damage). Several local peaks inducing links appear in the
magnitude of the cyclic bispectrum. However, the origin of these local
peaks is undetermined because they may be the result of the
cyclostationary components of order 1,2 or 3. From one point of view,
these dominant peaks resulted from order 1 or 2, and therefore, can
mask the pure information of the third-order cyclostationarity. From
another point of view, for the same order 3, these parameters based on
moments contain more information than the same parameters based on
cumulants. The third-order moment contains information that we can
access sequentially by using all the cumulants of order less than or
equal to 3.

Fig.1  Magnitude of the cyclic bispectrum of moments

4.2  Cyclic bispectrum of cumulants

In this example, the purity of estimation is taken into account. This
would be the case if the analysis of signals were to focus on each
order of cyclostationarity. That is equivalent to separate the
contributions of each order for diagnosis purposes, for example. Thus,
the cyclostationary component of first order is extracted from the
signal and the cyclic bispectrum is computed for the residual signal
without the periodic components. Fig. 2(a) shows the result of the
contour plot of the cyclic bispectrum of cumulants of the same
vibration signal. The observation of the result obtained leads to an
important conclusion. The local peaks which appear in Fig.1 are
absent when the cyclic bispectrum is computed based on cumulants. It
is clear that they result from the cyclostationary components of order



lower than 3 and that they mask the contribution of cyclostationary
components of order 3. This pure contribution of order 3, which
corresponds to cyclic bispectrum of the pure third-order
cyclostationary signal appears in Fig.2(a). This proves also that the
gear vibration signals from a complex industrial system are cyclic and
bilinear, since the cyclic bispectrum for a specific cyclic frequency is
not zero. This corresponds to the theoretical calculus of the higher
order cumulants in section 1.

To complete the analysis, the possible potential of the third-
order cyclostationarity for the analysis and diagnosis of rotating
machines is examined. A comparison with a vibrating signal with
fault-free components will then be necessary. The contour plot of the
cyclic bispectrum for a helicopter gear signal with no fault is shown in
Fig. 2(b) . These results show that the gear without any fault generates
only very few cyclostationary components of order 3. The appearance
of the spalling strongly enhances the level of these components. The
unique correlations that appear in Fig. 2(b) concern the correlations
between the rotating frequency 

1r
f and the other frequencies existing

in the industrial system. As a conclusion, this study underlines that
third order cyclic statistics will be a useful and powerful tool of
diagnostics for industrial and complex systems such as the U.S. Navy
helicopter gearbox.

(a)

(b)

Fig.2  Contour plot of the magnitude of cyclic bispectrum of
cumulants of Helicopter signal for a cyclic frequency 

1rf=α  (a)
with default  (b) No fault

5 CONCLUSION

This paper deals with the third-order cyclic statistics of vibration
signals in rotating machinery. Until now, the general theory has only
been the subject of some studies and applications such as
communications. [5] and [6] were the pioneers in extensively studying
the theory of cyclostationarity and in proposing consistent estimators
to compute statistical parameters. For the second order, the spectral
correlation was demonstrated as a powerful tool for the diagnosis of
gear faults. For the third order, no research has previously been
proposed for mechanical applications. The originality of this paper
consists in proving that vibration signals from rotating machinery are
bilinear and cyclic and display third-order cyclostationarity.
Application of the cyclic bispectrum to vibration signals shows the
difference between the estimation based on moments and on
cumulants and demonstrates the performance of the third-order cyclic
statistics for diagnostic purposes.
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