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ABSTRACT

An adaptive sampling scheme is presented for detect-
ing complex patterns in noisy imagery. By represent-
ing imaging processes in terms of unknown contraction
mappings, capturing probability is generated for fractal
attractors approximating observed patterns. The total-
ity of local maxima of the capturing probability is shown
to yield a pattern sensitive sampling of the fractal at-
tractor. The detectability of the sampling scheme has
been verified through simulation studies.

1 Introductory Remarks
In the theory of digital image analysis, complex pat-
terns are described as computable entities on discrete
image plane. In many practical applications, such dis-
crete representation should maintain complete informa-
tion for exact restoration of complex imagery as shown
in Fig. 1. In this figure, the expansion of roadway area is
represented by random distribution of feature points of
texture patterns. Within conventional statistical – com-
putational frameworks, however, it is not easy to gen-
erate such “visible” representation of random imagery.
For instance, sampling on “very fine” lattice often yields
“fragile” discrete representation that is too susceptive to
non-essential pattern deformation. By coarse sampling,
on the other hand, it is not easy to identify observed
pattern in near misses. To extract complex patterns
within noisy background, thus, feature points should be
sampled for regenerating exact patterns to be detected.

A potential way to bypass the self-contradiction is to
introduce the self-similarity as a priori pattern struc-
ture. Noticing logical – geometric coordination in self-
similarity imaging processes, in this paper, we assume
that patterns to be observed are generated as fractal
attractors associated with unknown set of contraction
mappings. The assumption of self-similarity is not re-
strictive because we can approximate any patterns via
the following “Fractal Collage [1]”: For arbitrary pattern
Λ in a fixed image plane Ω, there exists a set of contrac-
tion mappings ν = {µi, i = 1, 2, . . . ,m}, that yields an
invariant subset Ξ ⊂ Ω for approximating the pattern Λ

❄

Figure 1: Complex Pattern in Noisy Background
In natural scene, referent objects of complex
appearances are observed with many “distract-
ing” objects. To concentrate objects of in-
terest, perception channels are required to
generate symbols of unpredictable patterns in
“background noise.”

within arbitrary small imaging error. This implies that
any observed patterns can be coded in terms of finite
symbols. The finite code completely specifies imaging
process for generating fractal attractor of infinite geo-
metric complexity.

In contrast with conventional statistical – computa-
tional representation, fractal model conveys complete in-
formation to specifies invoked contraction mappings. In
fact, enough data for determining mapping parameter is
visualized as the distribution of attractor points. Hence,
we have logical bases for pattern coding as the following
“Structural Observability [2]”: The attractor Ξ is cov-



ered by the totality of fixed points θi, θj,. . . , associated
with all finite composite of the mappings µ1, µ2, . . . , µm.
Thus, pattern coding results in identifying origin – desti-
nation pairs in complex attractors. Since each attractor
point deterministically “jumps” into the attractor by a
contraction mapping, we have exact origin – destination
associations in observed imagery.

In addition, the self-similarity induces definite associ-
ation between geometric order, i.e., spatial distribution
of attractor points, and probability for pattern captur-
ing, i.e., brightness distribution. This implies that we
can analyze pattern structure via the estimation of the
“Invariant Measure [1]”: For arbitrary attractor Ξ gen-
erated by random application of fixed contraction map-
pings, there exists a measure χp

Ξ that is invariant with
respect to transform by the mappings ν. The existence
of invariant measure implies the association between the
distribution pattern and the density function of fractal
attractors. The self-similarity of the density function
introduces the self-similarity in the distribution of sta-
tistical parameter.

2 2D Gaussian Sampling
Let L be a “uniform” lattice with resolution ε/

√
2
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2
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2
,

and consider the integration of above mentioned three
aspects of self-similarity on digital image plane. As dis-
crete detectors of complex patterns, let the family of
Gaussian probability density functions

{
g�σ, σ > 0

}
, be

introduced on L where

g�σ(ω) =
1

2πσ
exp

[
−|ω − �|2

2σ

]
, � ∈ L. (1)

Noticing g�σ, σ > 0 yields a δ-convergent sequence:

g�σ → δ� as σ → 0,

where δ� denotes the “point” image concentrated on �,
we have the following stochastic sampling scheme on L:

G =
{
g�σ, � ∈ L

}
. (2)

By testing the value of distributions on G, the image of
the invariant measure χp

Ξ is exactly sampled in a sto-
chastic sense:

χG
Ξ =

{
χp

Ξ(g�σ)ω, � ∈ L
}
, (3a)

where

χp

Ξ(g�σ)ω = g�σ ∗ χp

Ξ(ω). (3b)

In the sampling scheme (G,L), complete information χp

Ξ

of infinite resolution is associated with discrete image
plane L.

3 Associated Multi-Scale Image
Consider the adaptation of “scale parameter” σ to the
self-similar pattern satisfying

Ξ =
⋃
µi∈ν

µi(Ξ). (4)

The structural observability implies that the process
should be modeled by 2D dynamical system with the
following antagonistic imaging mechanisms

• diffusion of point image δξ within image plane Ω,
and,

• successive reduction of imaging domain via not-yet-
identified contraction mappings µi ∈ ν.

Let the imaging process model be described in terms of
the following system

∃µi ∈ ν : ωt+1 = µi(ωt), (5)

where random shift of a point image is considered to be
observed as a sample path on a “tectonic plate” succes-
sively reduced by randomly selected mapping µi ∈ ν.
By identifying “observation error” with 2D Brownian
motion, we have the following stochastic evaluation for
capturing the point image within unknown attractor Ξ:

Proposition 1 (Capturing Probability) Let χp

Ξ be a
given brightness distribution to be collaged by ν = {µi}.
Assume that the distribution is observed through the
Gaussian array G. Then, for each � ∈ L, the probabil-
ity for regenerating Ξ within the framework of maximum
entropy capturing is visualized as a smooth field ϕ(ω|ν)
satisfying

1
2
∆ϕ(ω|ν) + ρ[χp

Ξ(g�ε)ω − ϕ(ω|ν)] = 0, (6a)

where ρ is complexity factor specified in terms of ‖ν‖,
the size of the set ν:

ρ = log ‖ν‖. (6b)

4 Pattern Boundary on Invariant Measures
By paraphrasing the generator (6) as

ϕ(g�ε |ν) = χp

Ξ(g�ε) +
1
2
∆ϕ(g�ε |ν) · τ(ρ), (7)



where τ(ρ) = 1/ρ = 1/ log ‖ν‖, we have the following
association with multiscale imagery [3]:

ϕ((·)|ν) ∼ gτ(ρ) ⇐⇒ g�ε +
∫ τ(ρ)

0

1
2
∆gtdt, (8)

on Gaussian array (G,L). Hence, we have the estimate
Ξ̂ν on continuous image plane by

Ξ̂ν =
{
ω ∈ Ω

∣∣ ϕ(ω|ν) ≥ γ(ρ)
}
. (9)

Consider self-similar patterns generated in noisy back-
ground. For such patterns, we can generate the captur-
ing probability and a version of conditional probability
for evaluating possible variation of brightness, as follows:

p(ω|ν) =
ϕ(ω|ν)
Cϕ

Ω

, (10a)

Cϕ
Ω =

∫
Ω

ϕ(ω|ν)dω. (10b)

By using the conditional probability, we can index the
complexity of brightness variation in terms of the fol-
lowing Shannon’s entropy

Ĥν = −
∫

Ω

p(ω|ν) log p(ω|ν)dω

= −E
{

log p(ω|ν)
∣∣ ν}

. (11)

The existence of self-similarity structure should be veri-
fied through the comparison with the entropy evaluation
under “null condition”:

Ĥ∅ = −E
{

log p(ω|∅)
∣∣ ∅}, (12)

where p(ω|∅) = const. on Ω. Hence, we have

Proposition 2 (Pointwise Filtering) [4] Assume the
background noise χΩ is uniformly distributed in the im-
age plane Ω and suppose that observed measure χΛ is
represented by

χΛ = χp

Ξ + χΩ. (13)

Then the boundary level is given by

γ = Cϕ
Ω p̄ν , (14a)

log p̄ν = 1 − 1
2
(1 − eĤν−Ĥ∅) − Ĥ∅. (14b)

5 Pattern Sensitive Sampling
The capturing probability ϕ(ω|ν) is the smoothing of
gray level distribution of self-similar patterns. By mod-
eling the imaging via unknown contraction mappings in
terms of 2D Brownian motion on dynamically regen-
erated domain, a unified framework is introduced for

information compression: the maximum entropy. Due
to the infinite differentiability of generated field, on the
other hand, the capturing probability maintains com-
plete information of self-similarity processes. The as-
sociation (8), particularly, implies that the generator of
the capturing probability is adapted to the complexity
of the patterns to be observed.

Consider a discrete image defined by

Θ̃ =
{
θ̃ ∈ Ω

∣∣∇ϕ(θ̃|ν) = 0,

det
[
∇∇Tϕ

]
(θ̃|ν) > 0,

∆ϕ(θ̃|ν) < 0
}
. (15)

Through the adaptation of the field ϕ(ω|ν) to unknown
generator, the image Θ̃ yields a version of sampling pat-
tern. On the sampled pattern Θ̃, we can successively
apply contraction mappings to generate complex pat-
tern consisting of point images

〈µi〉t (Θ̃) =
{
〈µi〉t (θ̃)

∣∣ θ̃ ∈ Θ̃
}
,

where 〈µi〉t denotes a finite composite on mapping set
ν with length t:

〈µi〉t = µt
iµ

t−1
i · · ·µ2

iµ
1
i , µs

i ∈ ν.

The mapping structure is said to be uniformly observ-
able if, for arbitrary ξ ∈ Ξ and ε > 0, there exists a
finite composite 〈µi〉t generating the fixed point ξt

ξt = 〈µi〉t (ξt), µi ∈ ν, (16a)

such that the following condition is satisfied [5]:

|ξ − ξt| < ε. (16b)

The observability condition can be tested on discrete
image Θ̃ as follows:

Proposition 3 (Invariant Features) Assume that
there exists an subset Θ ⊂ Θ̃ invariant with respect to
ν, i.e.,

Θ =
{
θ ∈ Θ̃

∣∣ ∃µi ∈ ν : µ−1
i (θ) ∈ Θ

}
. (17)

Suppose that for arbitrary µi ∈ ν there exist θo, θd ∈ Θ
such that

θd = µi(θo). (18)

Then the image generator ν = {µi} is uniformly observ-
able.

Obviously, Θ ⊂ Ξ if Θ̃ ⊂ Ξ. This implies that we can
restrict the domain for extracting invariant features by
the following pointwise filter:

Θ̂ =
{
θ̂ ∈ Θ̃

∣∣ p(θ̂|ν) ≥ p̄ν

}
. (19)



Figure 2: Noisy Observation of Fractal Leaves

Thus, we have generic representation of the self-
similarity on noisy discrete imagery as follows:

Θ =
{
θ ∈ Θ̂

∣∣ ∃µi ∈ ν : µ−1
i (θ) ∈ Θ

}
. (20)

In this representation, the constraint for imaging process
is grammatically specified on discrete pattern Θ̂. The
discrete pattern Θ̂ is extracted within sampled image
Θ̃ through pointwise filtering. The discrete information
Θ̃, conversely, is generated through adaptive sampling
based on stochastic evaluation ϕ(ω|ν) for unknown map-
pings ν.

6 Experiments
Pattern detection on proposed sampling scheme was ver-
ified via simulation studies. In these simulations, frac-
tal attractors were generated by Monte-Carlo simula-
tion on continuous image model. To each attractors,
uniformly distributed random dots were added as back-
ground noise as shown in Fig. 2. Results of simulation
studies are illustrated in Fig. 3.

Figure 2 illustrate an observation of a fractal pattern
χp

Ξ in background noise χΩ satisfying ‖χΩ‖ = 4‖χp

Ξ‖.
Pattern detection results in this situation are shown
in Fig. 3. In these figures, the distribution of attrac-
tor points are “counted” on 2D lattice L of 32×32 size
(Observables view) where we have the initial value for
generating capturing probability ϕ(ω|ν). Extracted sto-
chastic features are illustrated in “Features View” where
Θ̂ is estimated via in-out discriminator (19) and indi-
cated by ( ) in background noise ( ). As shown in
Fig. 3, the generator of observed self-similar pattern is
observable so that the generator yields invariant subset
Θ ⊂ Θ̂ (Coding View) and regenerates fractal attractor
(Restoration View). Thus, we can detect the generator
of observed pattern via structure sensitive sampling Θ̂
on discrete image (G,L).

Proposed detection method was applied to various
fractal patterns in various levels of additive noise. The
results of simulation studies are summarized as follows:

Figure 3: Uniformly Observable Fractal Model

• Proposed pointwise filter generates discrete subset
of unknown fractal attractors.

• Sampled patterns is well structured to support ori-
gin – destination associations with respect to not-
yet-identified mapping set.

• Structural consistency of sampled pattern with
mapping descriptions can be evaluated by observ-
ability test.

7 Concluding Remarks
A method was presented for structure sensitive sampling
of unknown fractal attractors in noisy imagery. The cap-
turing probability is sensitive to self-similar structure
so that generated discrete pattern specifies the totality
of most probable attractor points. Through simulation
studies, extracted discrete patterns have been verified to
maintain sufficient information to regenerate observed
attractors.
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