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ABSTRACT

In this paper, we propose new design methods for linear
phase FIR filters with signed power-of-two (SP2) coeffi-
cients based on a semi-definite programming (SDP) relax-
ation method. The proposed methods include a linear pro-
gramming (LP) relaxation and a relaxation by adding tri-
angle inequalities. Although such the design problems are
known as one of the NP-hard problems, these methods can
solve the design problems in a low computational cost in
comparison with a traditional SDP relaxation method. It is
shown by several numerical experiments that those method
are superior to the simple SDP relaxation method.

1. INTRODUCTION

Recently, many studies on a design method for linear phase
FIR filters with discrete coefficients have been published,
in which, a numerical representation by a sum of signed
power of two(SP2) has been used in several methods [1],
[2], [3], [5]. It is a reason that a small number of non-zero
digits is often required to include for a representation of the
coefficients in a VLSI implementation of the filters.

However, it is difficult to design such the filters since it
reduces to an integer programming problem(IP), which is
well-known as one of the NP-hard problems [8]．

Lu [9] proposed a new design method of filters with SP2
coefficients, in which, the design problem was formulated
as a semi-definite programming(SDP) relaxation problem
and solved by the interior point method. The SDP relaxation
is one of the techniques for approximation of a non-convex
programming problem including the IP [10]. Although the
SDP relaxation is attractive to be solved in a polynomial
time under some constraints qualification [11], it also in-
volves a large computational complexity with a proportion
of the designed filter’s order [12].

It is well known that SDP problem is a convex program-
ming problem and can be solved in polynomial time under
some constraint qualification [11]．In this paper, we pro-
pose two new relaxation methods based on the SDP relax-
ation, i.e., a simple linear programming (LP) relaxation and
a relaxation by adding triangle inequalities. It is shown by

some numerical experiments that these relaxations are su-
perior to the simple SDP relaxation.

2. DESIGN METHOD OF DIGITAL FILTERS BY
USING {−1, 1}-OPTIMIZATION PROBLEM

In this section, we introduce the design method of digital fil-
ters with SP2 coefficients using SDP problem based on [9].
This design method is constructed by two steps: (1) solve
the design problem of digital filters with desired frequency
characteristics by using continuous variables, (2) formulate
the design problem of digital filters with SP2 coefficients
as a {−1, 1}-optimization problem. To consider the struc-
ture of the {−1, 1}-optimization problem obtained, we will
convert the {−1, 1}-optimization problem to a minimum
cut problem with negative coefficients which belongs to the
class NP-hard.

2.1. Design problem of FIR digital filters with continu-
ous coefficients

We design the FIR filters with SP2 coefficients so as to min-
imize the square error defined as,

e =
∫ π

0

W (ω)[H(ejω) − Hd(ω)]2dω (1)

where W (ω) ≥ 0 is a weight function and Hd(ω) is the de-
sired frequency response function. In the first, we consider
the continuous coefficient case. Then the transfer function
of the FIR filter is:

Hc(z) =
N−1∑
k=0

hkz−k (2)

where hk (k = 0, 1, . . . , N −1) are real numbers. Now, we
assume M is the total number of SP2 terms that can be used
in H(z) and mk is the number of SP2 terms used in the k

term of the frequency response H(ejω), i.e.,
∑N−1

k=0 mk =



M . Then we denote

H(z) =
N−1∑
k=0

dkz−k. (3)

The allocation of SP2 terms is determined, for example, by
[13]．

We assume that the absolute value of each SP2 term
|{dk}| is in the interval [20, 2−U ] where U is a natural num-
ber. Then, by (3),

dk =
mk∑
i=1

b
(k)
i 2−q

(k)
i . (4)

Here, we have b
(k)
i ∈ {−1, 1} and q

(k)
i ≤ U, (1 ≤ i ≤

mk, 0 ≤ k ≤ N − 1).
For given {mk, k = 0, . . . , N − 1} and U , when an

optimal continuous solution Hc(z) =
∑N−1

k=0 hkz−k is ob-
tained, it is easy to find the maximum SP2 number dk and
the minimum SP2 number d̄k that satisfy d̄k ≤ hk ≤ dk

whose dk and d̄k satisfy (4) for the given mk.
Let dmk = (dk + d̄k)/2 be the middle point of the inter-

val [dk, d̄k] and δk = (dk − d̄k)/2 be the half length of the
interval. Then, dk and d̄k are expressed as dmk+xkδk(xk =
−1) and dmk + xkδk (xk = 1), respectively. Hence, the
transfer function H(z) with discrete coefficient function be-
comes

H(ejω) =
N−1∑
k=0

d
(s)
k e−jkω (5)

= Hm(ejω) + xT [cδ(ω) − jsδ(ω)] (6)

by using

dk = dmk + xkδk, (7)

and

Hm(ejω) = dT
m[c(ω) − js(ω)],

dm = (dm0, dm1, . . . , dm,N−1)T ,
c(ω) = (1, cos ω, . . . , cos(N − 1)ω)T ,
s(ω) = (0, sin ω, . . . , sin(N − 1)ω)T ,
cδ(ω) = (δ0, . . . , δN−1 cos(N − 1)ω)T ,
sδ(ω) = (0, . . . , δN−1 sin(N − 1)ω)T ,
x = (x0, x1, . . . , xN−1)T , xi ∈ {−1, 1}.

(8)

By (6), we can easily verify that the objective function (1)
becomes

e = xT Qx + 2xT q + const (9)

where

Q =
∫ π

0

W (ω)[cδ(ω)cT
δ (ω)]dω

q =
∫ π

0

W (ω)[Er(ω)cδ(ω) + Ei(ω)sδ(ω)]dω

Er(ω) = dT
mc(ω) − Hdr(ω),

Ei(ω) = dT
ms(ω) − Hdi(ω),

Hd(ω) = Hdr(ω) − jHdi(ω).

(10)

Now, design problem of H(z) with SP2 coefficients for
minimizing weighted least square becomes a {−1, 1}-quadratic
integer programming problems [9]:

min xT Qx + 2qT x
sub. to x ∈ {−1, 1}N .

(11)

2.2. Derivation to the minimum cut problem

To know the structure of the optimization problem is al-
ways important. In the following, we will point out that the
problem (11) can be easily converted to the minimum cut
problem with negative coefficients. Minimum cut problem
with negative coefficients belongs to the class of NP-hard.
Hence, this shows (11) is a hard problem to solve.

Let G = (V, E) be a perfect graph with a vertex set V =
{0, 1, . . . , N} and an edge set E = {ij | 0 ≤ i < j ≤ N}.
And, a weight we(e ∈ E) of the each edge be{

wjN = −qj (j = 0, . . . , N − 1),
wij = −Qij (0 ≤ i < j ≤ N − 1). (12)

Then the minimum cut problem of the graph G is:

min 4
∑
e∈E

weye + eT Qe + 2qT e

sub. to y : a 0-1 cut vector of G,
(13)

or equivalently

min
∑
ij∈E

wij(xi − xj)2 + eT Qe + 2qT e

sub. to x ∈ {−1, 1}N+1.
(14)

It is easy to see that problem (11) and (14) are equivalent
each other. Here, we denote, without loss of generality,
xN = 1 in (14). Since, as we pointed out that minimum cut
problem with negative coefficients belongs to the class of
NP-hard, there will no hope to develop efficient algorithms
to solve (11) directly.

3. SDP RELAXATION AND LP RELAXATION

Following Lu [9], we reformulate (11) as

min Q • X + 2qT x
sub. to X − xxT = O,

x ∈ {−1, 1}N
(15)



where Q•X =
∑
i,j

QijXij . Then, since Xii = x2
i = 1 (i =

0, . . . , N − 1) we obtain an relaxation problem of (11) by

min Q • X + 2qT x
sub. to Xii = 1 (i = 0, . . . , N − 1),

X − xxT � O.
(16)

Here, A � O denotes that A is positive semidefinite. Be-
tween a cut vector y ∈ {0, 1}E of the graph G and (x, X)
that satisfies (15), the following equations hold:{

xj = −2y0j + 1 (j = 0, . . . , N − 1),
Xij = −2yij + 1 (0 ≤ i < j ≤ N − 1). (17)

We can use software to solve SDP in polynomial times,
for example, SeDuMi [14].

It is easily verified that the next triangle inequalities hold
[15]:

xi + xj + Xij ≥ −1,
xi − xj − Xij ≥ −1,

−xi − xj + Xij ≥ −1,
−xi + xj − Xij ≥ −1.




(18)

Here, we denote 0 ≤ i < j ≤ N − 1. And, for 0 ≤ i < j <
k ≤ N − 1,

Xij + Xik + Xjk ≥ −1,
Xij − Xik − Xjk ≥ −1,

−Xij − Xik + Xjk ≥ −1,
−Xij + Xik − Xjk ≥ −1




(19)

hold. (18) is the triangle inequalities for the vertex set {i, j,N},
and (19) is the triangle inequalities for the vertex set {i, j, k}.
Therefore, the next optimization problem

min Q • X + 2qT x
sub. to Xii = 1 (i = 0, . . . , N − 1),

(18), (19),
X − xxT � O

(20)

strengthen the problem (16).
Since it is easier to solve LP problems than SDP prob-

lem, we will relax the SDP relaxation problem to LP relax-
ation problem. The following minimization problem

min 2
∑
i<j

QijXij + 2qT x +
N−1∑
i=0

Qii

sub. to (18),
−1 ≤ xi ≤ 1 (i = 0, . . . , N − 1)

(21)

is a LP relaxation problem with a bounded optimal solution.
Adding (19) as constraints,

min 2
∑
i<j

QijXij + 2qT x +
N−1∑
i=1

Qii

sub. to (18), (19),
−1 ≤ xi ≤ 1 (i = 0, . . . , N − 1)

(22)

we have a strengthened problem for (21).

4. COMPARISON OF THE RELAXATION
PROBLEMS

From the theoretical view point, SDP relaxation with trian-
gle inequalities are stronger than SDP relaxation, LP relax-
ation, or LP relaxation with triangle inequalities. However,
SDP relaxation with triangle inequalities is a rather heavy
relaxation for programming techniques and computation.
Hence, we simply compare the SDP relaxation, LP relax-
ation and, LP relaxation with triangle inequalities through
numerical experiments.

In the numerical experiments, the specification of the
filter design problem is basically same as Lu [9], hence,
FIR filter is an odd degree and even symmetric linear phase
lowpass filter. The design specification is as follows: the
normalized passband is [0, ωp] = [0, 0.225], stopband is
[ωs, 1] = [0.275, 1], W (ω) = 1 on [0, ωp], W (ω) = 500 on
[ωs, 0.5], L = 12. And, we set each mk = 2. The CPU used
is mobile Pentium III 650 MHz, memory is 192 Mbytes. All
problems are solved by SeDuMi (Ver.1.03) [14]. The CPU
time contains only the execution time of SeDuMi.

By the numerical experiments, we found (1) all the so-
lutions of LP with triangle inequalities (22) are optimal so-
lutions of the original problem (11), that is, all the solutions
of (22) are {−1, 1}-integer solutions and automatically opti-
mal solutions for (11). This reveals that the triangle inequal-
ities are very important. At now, all triangle inequalities are
included in the relaxation problems, we can also develop an
algorithm that has triangle inequalities as cutting planes.

How to obtain an {−1, 1}-solution from the solution of
the relaxation problems is as follows:
(1) For the SDP relaxation problem, let the solution of the
relaxation problem (x̃, X̃),
(1-1) sign(x̃).
(1-2) let vi (i = 0, . . . , N − 1) be the eigen vectors of X̃ ,
and set sign(vi) (i = 0, . . . , N − 1).
(1-3) Use the Goemans-Williamson’s randomized algorithm
[16]．
Select the best solution of the above solutions. (Lu [9] ex-
ploits (1-1) and (1-2) for the maximal eigen vectors, How-
ever, we recommend the above, since it does not take so
much CPU time, and may improve the solution.)
(2) For LP relaxation problems, we exploited the sign vector
vi of the solution of the relaxation problems x̃.

5. CONCLUSION

In this paper, we proposed LP based relaxation techniques
to solve the design problem of FIR filters with SP2 coeffi-
cients under MLE criterion. And, we compared this relax-
ation technique and the SDP relaxation through numerical
experiments. By the numerical example, LP based relax-
ation technique seems to work fairly good.



Table 1. Comaparison of upper bounds (∗ is the best solu-
tion).

N WLS LP LP+Tri SDP
7 0.29413 0.42797∗ 0.42797∗ 0.42797∗

13 0.10269 0.10543∗ 0.10543∗ 0.10543∗
19 0.02473 0.08771∗ 0.08771∗ 0.08771∗
25 0.01169 0.02655 0.02606∗ 0.02606∗
31 0.00288 0.01258∗ 0.01258∗ 0.01415
37 0.00141 0.06321 0.06231∗ 0.06263
43 0.00035 0.15770 0.08531∗ 0.08531∗
49 0.00018 0.05953 0.05781∗ 0.05781∗
55 0.00004 0.04949 0.04946∗ 0.04979
57 0.00004 0.05035∗ 0.05035∗ 0.05035∗
59 0.00002 0.05359 0.05345∗ 0.05350
61 0.00002 0.05425 0.05409∗ 0.05442

Table 2. Computational Time (sec)
n LP LP+Tri SDP
7 0.04 0.05 0.06
13 0.08 0.09 0.08
19 0.08 0.15 0.11
25 0.10 0.31 0.11
31 0.19 0.67 0.13
37 0.19 1.34 0.16
43 0.25 2.51 0.19
49 0.31 4.80 0.20
55 0.43 8.85 0.26
57 0.45 9.78 0.26
59 0.48 14.46 0.28
61 0.50 14.94 0.30
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