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ABSTRACT

In this paper, we propose new design methods for linear
phase FIR filters with signed power-of-two (SP2) coeffi-
cients based on a semi-definite programming (SDP) relax-
ation method. The proposed methods include a linear pro-
gramming (LP) relaxation and a relaxation by adding tri-
angle inegqualities. Although such the design problems are
known as one of the NP-hard problems, these methods can
solve the design problems in a low computational cost in
comparison with a traditional SDP relaxation method. It is
shown by several numerical experiments that those method
are superior to the simple SDP relaxation method.

1. INTRODUCTION

Recently, many studies on a design method for linear phase
FIR filters with discrete coefficients have been published,
in which, a numerical representation by a sum of signed
power of two(SP2) has been used in several methods [1],
[2], [3], [5]. Itisareason that a smal number of non-zero
digitsisoften required to include for arepresentation of the
coefficientsin a VLS| implementation of the filters.

However, it is difficult to design such the filters since it
reduces to an integer programming problem(IP), which is
well-known as one of the NP-hard problems [8]C

Lu[9] proposed anew design method of filterswith SP2
coefficients, in which, the design problem was formulated
as a semi-definite programming(SDP) relaxation problem
and solved by theinterior point method. The SDPrelaxation
isone of the techniques for approximation of a non-convex
programming problem including the IP [10]. Although the
SDP relaxation is attractive to be solved in a polynomial
time under some constraints qualification [11], it also in-
volves a large computational complexity with a proportion
of the designed filter’s order [12].

Itiswell known that SDP problem isaconvex program-
ming problem and can be solved in polynomial time under
some constraint qualification [11]0 In this paper, we pro-
pose two new relaxation methods based on the SDP relax-
ation, i.e., asimplelinear programming (L P) relaxation and
arelaxation by adding triangle inequalities. It is shown by
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some numerical experiments that these relaxations are su-
perior to the simple SDP relaxation.

2. DESIGN METHOD OF DIGITAL FILTERSBY
USING {-1,1}-OPTIMIZATION PROBLEM

In this section, weintroduce the design method of digital fil-
ters with SP2 coefficients using SDP problem based on [9].
This design method is constructed by two steps: (1) solve
the design problem of digital filters with desired frequency
characteristics by using continuous variables, (2) formulate
the design problem of digital filters with SP2 coefficients
asa{—1, 1}-optimization problem. To consider the struc-
ture of the {—1, 1}-optimization problem obtained, we will
convert the {—1, 1}-optimization problem to a minimum
cut problem with negative coefficients which belongs to the
class NP-hard.

2.1. Design problem of FIR digital filterswith continu-
ous coefficients

We design the FIR filterswith SP2 coefficients so asto min-
imize the square error defined as,

e = / CWW)HE) - H@)Pdo (1)

where W (w) > 0 isaweight function and H,(w) isthe de-
sired frequency response function. In the first, we consider
the continuous coefficient case. Then the transfer function
of the FIR filter is:

N—
H.(z) = hiz"" 2
k=0

Ju

wherehy, (k=0,1,..., N —1) arereal numbers. Now, we
assume M isthetotal number of SP2 termsthat can be used
in H(z) and my, is the number of SP2 terms used in the k&
term of the frequency response H (e7*), i.e, S p—y my =



M. Then we denote

N—
H(z)= dpz"F. 3)
k=0

Ju

The alocation of SP2 terms is determined, for example, by
[13]10

We assume that the absolute value of each SP2 term
|{dx}|isintheinterval [2°, 2-Y] where U isanatural num-
ber. Then, by (3),

mg

d =Y b2, )

i=1

Here, we have bgk) € {-1,1} and qqfk) <U (1<i<

For given {my, & = 0,... ,N — 1} and U, when an
optimal continuous solution H,(z) = S n " hyz~* is ob-
tained, it is easy to find the maximum SP2 number d,, and
the minimum SP2 number dj, that satisfy d. < hy < d,
whose d,, and d;, satisfy (4) for the given m..

Let d,x = (di, +dy)/2 bethe middie point of theinter-
val [d,,dy] and &, = (d,, — dy)/2 be the half length of the
interval. Then, d,, and d;, are expressed asd,,, +210x (1), =
—1) and dyi + z10x (zr = 1), respectively. Hence, the
transfer function H (z) with discrete coefficient function be-
comes

N—-1
H(e™) = Y de ke )
k=0
= Hp (') + 2" [es(w) — jss(w)]  (6)
by using
di, = dmk + T10k, (7
and

Hy (%) = dyy[e(w) — js()],

dm = (dmov dmla s 7dm,N71)Ta

c(w) = (1,cosw,...,cos(N — 1)w)T,

s(w) = (0,sinw, ... ,sin(N — 1)w)T, (8
cs(w) = (0o, ... ,0n—1cos(N = 1)w)”,

ss5(w) =(0,...,0n_1sin(N — 1)w)T,
2= (0,1, ey )T, @ € {~11).

By (6), we can easily verify that the objective function (1)
becomes

e =x! Qx + 2z’ q + const 9

where
Q- /QT W () les (w)el () dw
a= [ W @) + B@s@lds 0

E,(w) = dl c(w) — Hyp(w),
Ei(w) = dF s(w) — Hyi(w),

a(w) = Hygp(w) — jHgi(w).

Now, design problem of H (z) with SP2 coefficients for
minimizing weighted |east square becomesa{—1, 1}-quadratic
integer programming problems [9]:

min 2TQx + 29"«
sub.to z € {-1,1}V. (1)

2.2. Derivation to the minimum cut problem

To know the structure of the optimization problem is al-
ways important. In the following, we will point out that the
problem (11) can be easily converted to the minimum cut
problem with negative coefficients. Minimum cut problem
with negative coefficients belongs to the class of NP-hard.
Hence, this shows (11) is a hard problem to solve.

Let G = (V, E) beaperfect graphwithavertex set V =
{0,1,... ,N}andanedgeset E = {ij |0 <i < j < N}
And, aweight w, (e € E) of the each edge be

WiN = —(; (j=0,...,N—1), (12)

Then the minimum cut problem of the graph G is:

min 4Zweye +eTQe+2q%e
eelE (13)
sub.to 1wy :a0-1 cut vector of G,

or equivalently

min Z wq;j(l‘qj —xj)2+eTQe+2qTe
ijeE (14)
sub.to x € {—1,1}V+L

It is easy to see that problem (11) and (14) are equivalent
each other. Here, we denote, without loss of generality,
xn = 1in(14). Since, as we pointed out that minimum cut
problem with negative coefficients belongs to the class of
NP-hard, there will no hope to devel op efficient algorithms
to solve (11) directly.

3. SDP RELAXATION AND LP RELAXATION

Following Lu [9], we reformulate (11) as

min Qe X +2¢"x
sub.to X —zx” = O, (15)
ze {11}V



whereQe X = ZQinij. Then, since X;; = 22 = 1 (i =
i.J
0,...,N — 1) weobtain an relaxation problem of (11) by
min Qe X +2q"x
sub.to X;; =1(3=0,...,N—1), (16)
X —zzT = O.

Here, A = O denotes that A is positive semidefinite. Be-
tween acut vector y € {0, 1} of the graph G and (z, X)
that satisfies (15), the following equations hold:
{Ej:—2y0j+1(j:0,...,N—1), (17)
We can use software to solve SDP in polynomial times,
for example, SeDuMi [14].
Itiseasily verified that the next triangle inequalitieshold
[15]:

itz + Xij > —1,

Ti— Tj — Xij Z —1,
—T; — Ty + Xij Z —1, (18)
—x; +x; — X > —1.

Here,wedenote0 <i < j < N—1.And,for0 <i< j <
k<N-1,

Xij + Xk + X5 > -1,
Xij — Xaw — Xy =2 —1,
—Xij — Xa + Xje > -1,
—Xij + X — Xji = -1

(19)

hold. (18) isthetriangleinequalitiesfor the vertex set {4, j, N },

and (19) isthetriangleinequalitiesfor thevertex set {4, j, k }.
Therefore, the next optimization problem

min Qe X +2¢"x

sub. to Xii:1(i:O,... 7]\f—l),
(18), (19),
X -—zxzT >0

strengthen the problem (16).

Since it is easier to solve LP problems than SDP prob-
lem, we will relax the SDP relaxation problem to LP relax-
ation problem. The following minimization problem

(20)

N-1
min 2> Qi Xy +2¢"z+ > Qi
i<j i=0 (2D
sub. to  (18),
~1<2;,<1(i=0,...,N—1)
isaLPrelaxation problem with abounded optimal solution.
Adding (19) as constraints,

N-1
min 22 Qi Xij +2q" = + Z Qi
i<j i=1
(18),(19),

1<z <1(i=0,...,N—1)

we have a strengthened problem for (21).

(22)
sub. to

4. COMPARISON OF THE RELAXATION
PROBLEMS

From the theoretical view point, SDP relaxation with trian-
gleinequalities are stronger than SDP relaxation, LP relax-
ation, or LP relaxation with triangle inequalities. However,
SDP relaxation with triangle inequalities is a rather heavy
relaxation for programming techniques and computation.
Hence, we simply compare the SDP relaxation, LP relax-
ation and, LP relaxation with triangle inequalities through
numerical experiments.

In the numerical experiments, the specification of the
filter design problem is basically same as Lu [9], hence,
FIR filter is an odd degree and even symmetric linear phase
lowpass filter. The design specification is as follows: the
normalized passband is [0,w,] = [0,0.225], stopband is
[ws, 1] =[0.275,1], W(w) = 1 0n[0,w,], W(w) = 500 on
[ws,0.5], L = 12. And, we set each m;, = 2. The CPU used
ismobile Pentium 111 650 MHz, memory is 192 Mbytes. All
problems are solved by SeDuMi (Ver.1.03) [14]. The CPU
time contains only the execution time of SeDuMi.

By the numerical experiments, we found (1) al the so-
Iutions of LP with triangle inequalities (22) are optimal so-
lutions of the original problem (11), that is, all the solutions
of (22) are {—1, 1 }-integer solutionsand automatically opti-
mal solutionsfor (11). Thisrevealsthat thetriangle inequal-
itiesare very important. At now, al triangleinequalities are
included in the rel axation problems, we can also develop an
agorithm that has triangle inegualities as cutting planes.

How to obtain an {—1, 1}-solution from the solution of
the relaxation problemsis as follows:

(2) For the SDP relaxation problem, let the solution of the
relaxation problem (&, X)),

(1-1) sign(x).

(1-2) let w; (i = 0,..., N — 1) bethe eigen vectors of X,
and setsign(v;) (1 =0,... ,N —1).

(1-3) Use the Goemans-Williamson' srandomized algorithm
[16]0

Select the best solution of the above solutions. (Lu [9] ex-
ploits (1-1) and (1-2) for the maximal eigen vectors, How-
ever, we recommend the above, since it does not take so
much CPU time, and may improve the solution.)

(2) For LPrelaxation problems, we exploited the sign vector
v; of the solution of the relaxation problems &.

5. CONCLUSION

In this paper, we proposed LP based relaxation techniques
to solve the design problem of FIR filters with SP2 coeffi-
cients under MLE criterion. And, we compared this relax-
ation technique and the SDP relaxation through numerical
experiments. By the numerical example, LP based relax-
ation technigque seemsto work fairly good.



Table 1. Comaparison of upper bounds (x is the best solu-
tion).

N WLS LP LP+Tri SDP

7 | 0.29413 | 0.42797« | 0.42797+ | 0.42797«
13 | 0.10269 | 0.10543x | 0.10543* | 0.10543x
19 | 0.02473 | 0.08771« | 0.08771x | 0.08771x
25 | 0.01169 | 0.02655 | 0.02606x | 0.02606x
31 | 0.00288 | 0.01258« | 0.01258« | 0.01415
37 | 0.00141 | 0.06321 | 0.06231x | 0.06263
43 | 0.00035 | 0.15770 | 0.08531x | 0.08531x
49 | 0.00018 | 0.05953 | 0.05781x | 0.05781x
55 | 0.00004 | 0.04949 | 0.04946x | 0.04979
57 | 0.00004 | 0.05035« | 0.05035+ | 0.05035x
59 | 0.00002 | 0.05359 | 0.05345x | 0.05350
61 | 0.00002 | 0.05425 | 0.05409x | 0.05442

Table 2. Computational Time (sec)
n LP | LP+Tri | SDP
7 | 0.04 0.05 | 0.06
13 | 0.08 0.09 | 0.08
19 | 0.08 0.15 | 011
25| 0.10 031 | 011
31| 019 0.67 | 0.13
37 | 019 134 | 0.16
43 | 0.25 251 | 019
49 | 031 480 | 0.20
55| 043 8.85 | 0.26
57 | 045 9.78 | 0.26
59 | 048 14.46 | 0.28
61 | 0.50 1494 | 0.30
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