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ABSTRACT
The applicationof multi-split equalizers is proposedas a
meansof diminishing the trainingsequence length. Reduc-
tionsin theorderof four to six timesarepresentedfor practi-
calHDSL channels.Thenew structureis suitablefor numer-
ousapplications, for instance,asthe front endof any joint
equalization anddecoding schemethatmakesuseof a DFE
in aniterativeway.

I . INTRODUCTION

Digital communications through band-limited linear fil-
ter channelsare affected by both additive noiseand chan-
nel distortion [1]. Channeldistortion leadsto intersymbol
interference(ISI), which canbe compensatedby meansof
an equalizer. Whenchannel distortion is not known a pri-
ori, the equalizermust be of an adaptive nature. If adap-
tive, thentheequalizerrelieson a training sequence or on a
self-learning process. In this paperwe areconcerned with
equalizers adaptedvia a trainingsequence in a noiselessen-
vironment.Throughout this paper, theequalizerwill becon-
sideredpartof thedigital communicationsystemdepictedin
Figure1.
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Fig. 1. Communicationsystemwith ISI

Ourobjectiveis to present anew equalizer structure thatis
ableto achieve thesameperformanceasthetraditionalone,
but with a shortertraining sequence. In otherwords,we in-
tendto improve theoverall systemthroughput.To do so,we
makeuseof a novel filtering technique, themulti-split adap-
tive filtering [2]. Themulti-split operation candecreasethe
eigenvaluespreadof theautocorrelationmatrix of thechan-
nel output. This eigenvalue spreadis a limiting factor in
the performance of the leastmeansquare(LMS) algorithm
[3], which is usedto updatetheequalizer. Reducingsucha
spreadimprovestheconvergencerateof theequalizerparam-
eters,andthusashortertrainingsequencecanbeused.

Thedigital communicationchannelsto beconsideredhere
are from high-bit-rate digital subscriber line (HDSL) sys-

tems. With the developmentof rate-adaptive lines, HDSL
now seesabroadnew market,ascampusLAN’ susingasin-
glecopperpair[4]. In theU.S.,for instance,70%of all loops
containnonloadedtwistedpairsup to 18,000 feet,thusqual-
ifying to take advantageof suchrate-adaptive lines [5]. It
is alsoworth to saythat thereareabout700million copper
pairsin telephony around theworld [4]. And it is muchless
expensive to optimizetheuseof sucha wire network thanto
provideevery homewith afiberopticconnection.Theresults
presentedherearedirectly applicable to thedevelopmentof
moreefficientHDSL protocols.

This paper is organizedasfollows. SectionII presentsthe
derivationof themulti-split equalizers,basedon [2] and[6].
In SectionIII we presentthe resultsof the applicationof
multi-split equalizers to HDSL practicalchannels. Finally,
in SectionIV we draw ourconclusions.

I I . MULTI-SPLIT EQUALIZER

Let us consider the classical schemeof an adaptive
transversalfilter asshown in Figure2, where�����
	 is avec-
tor of � –by–1coefficients,and ������ . If we split up this
filter into its symmetricandanti-symmetric partsthen:�����
	����������
	����������
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Fig. 2. Traditional adaptive transversalfilter.

The symmetry and anti-symmetry conditions of � � ���
	
and � � ���
	 canbeeasilyintroducedthrough a linearly con-
strainedapproach[6]. It consistsof making:* � �,+.-0/(1# /.213 * � �+4-5/# /.213 (2)6 �7� 6 �8�$9 /
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Fig. 3. GSCimplementationof thesplit filter.

for : evenand ;=<?> @ , andof imposing:A�BC5D C�E�F
G <�H C and
A8BI�D IJE�F
G <$H I (3)

in a constrainedoptimization processof the mean-square
valueof the estimationerror K E�F
G , which is definedas the
differencebetweenthe desiredresponse L E�F
G andthe filter
output M E�F
G .

Now, using the GeneralizedSidelobeCanceller(GSC)
structure with thesymmetryandanti-symmetryconstraints,
the split filtering schemecanbe representedin the form of
Figure3 [6].

As far as the adaptation processis concerned, the LMS
algorithm canbeappliedindependentlyin eachbranch in a
normalizedfashion. Thus,the algorithmfor the symmetric
filter canbedefinedas:D�N COE�F
G < D�N C�E�FQPSRTGVU WX C E�F
G�Y N COE�F
G K E�F
G (4)

andfor theanti-symmetric filter as:D�N IJE�F
G < D�N I�E�FQPSRTGVU WX I E�F
G�Y N I�E�F
G K E�F
G (5)

where:XTZ E�F
G <\[ X]Z E�FQP^ROG
U RF E`_ Y N Z E�F
G0_ @ P [ X]Z E�FaPSRTGbGdc (6)

for ef< E�g!c`hOG , [ is the forgettingfactorand W is theadapta-
tion step-size.

Now, if eachbranchin Figure3 is consideredseparately,
the transversalfilters DiN C and DiN I canalsobe split into
their symmetricand antisymmetricparts. By proceeding
continuouslywith this processandalsosplitting the result-
ing filters,wearrive,afterM stepswith jJk'lVm splittingoper-
ations E�n < Roc j c0p]p0pdcrqsG , at themulti-split schemeshown
in Figure4.

A C k and
A I k are jutvl�kxw�m –by–j�t4l!k matrices

suchasin (3) and y N Z for ez<${ c0R|c0p0p]p5c : P�R , representthe
singleparametersof theresultingzero-orderfilters.

The above multi-split schemecanbe viewed as a linear
transformationof Y E�F
G denotedbyY N E�F
G <~} B Y E�F
G (7)

where
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Fig. 4. Multi- split adaptive filtering.

It canbeverifiedby direct substitutionthat } is a matrix
of U�R ’sand P8R ’s, in whichtheinnerproductof any two dis-
tinct columns is zero.Thecolumnsof } canbepermutedin
order to re-arrangethesingleparametersof Figure 4 in dif-
ferent sequences.Then,thereare :�� possiblepermutations.
Oneof themturns } into the : -orderHadamardmatrix � > .
Anotherveryinterestinglineartransform isobtainedmaking:A C k <���� t4l!k@P7� t4l�k@ � and

A I k <.� � t4l!k@� t4l�k@ � (9)

for n < Roc j c0p]p0pdcrq . Applying (9) to (8), weobtaina linear
transformationof Y E�F
G with thebutterfly structuredepicted
in Figure5, for :�<�� . The value of any butterfly stateis
definedasthesumof thevaluesof eachbranchenteringthat
state. If a branch is dashedit hasthe negative valueof its
startingstate.Otherwiseit hasthesamevalueasits starting
state.Notethatonly 24 addition operationsarenecessaryto
performthemulti-split operation for a eight-tapsfilter. Most
importantthanthat,nomultiplication is required.
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Fig. 5. Butterfly structure for themulti-split operation. Thedashed(solid)
lines representthesubtraction (addition) operation.

Regarding theadaptationprocess,theLMS algorithm can
beappliedindependentlyto eachsingleparameteras:y N Z E�F
G <~y N Z E�FQPSRTG
U WX]Z E�F
G�� N Z E�F
G K E�F
G (10)
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for º"��»¼²]±o²0½]½0½d²`¾¿¢S± .
Finally, when applying the multi-split filtering in chan-

nel equalization, À����
� represents the channel output andÁ ® ���
�Â� Ã ¯ ® ¬ ���
�d²b¯ ® § ���
�d²]½0½]½0²¹¯ ® ¤¦¥V§ ���
�&ÄÆÅ the linear
equalizer. The desiredresponse  !���
� is the so-calledtrain-
ing sequence.

I I I . EQUALIZING THE HDSL CHANNEL

As statedearly, the split operation canreducethe eigen-
valuesspreadof the autocorrelation matrix of the channel
output, in order to improvetheLMS algorithmperformance.
Onechannel having considerable eigenvaluesspreadis the
2kft-AWG26 channel [7], frequently encounteredin HDSL
applications. Thefrequency responseandthezerosdiagram
of this channel canbevisualizedin Figures6 and7 respec-
tively.
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Fig. 6. Frequency responseof the2kft-AWG26channel

Considering a 4-PAM input and an equalizer with 32
tapsfollowing thechannel, onecanestimatetheeigenvalue
spreadof sucha channel asbeing ÇÈ��Éo»Ê½ Ë . Whenapply-
ing themulti-split operationat thechanneloutput,thespread
is reduced to Ç?�Ì±o±|½ É . Thus, we can expect the multi-
split equalizer to have a muchbetterperformancethan the
traditional equalizer. Figure8 shows the ISI evolution for
both equalizers. The solid line in the plot grid represents
theamount of ISI thatcanbeconsideredastheedgeof the
open-eyecondition. Theopen-eyecondition requiresthatthe
trainingerror andthedirect-decisionerrorarethesame.

TheISI parameteris definedasin [8]:ÍuÎÏÍ ��Ð ©�Ñ ·© ¢�ÒQÓ  © Ñ ·©ÒQÓ  © Ñ ·© (13)
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Fig. 7. Zerosdiagram of the7-tapslong 2kft-AWG26channel

where
Ñ © �$Ô ©¡Õ ¯ © (14)

and Ô © and ¯ © arethechannel andtheequalizerimpulsere-
sponsescoefficients, respectively.
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Fig. 8. ISI evolution for the2kft-AWG26channel

Figure 8 shows that the multi-split equalizerrequires a
trainingsequence of just 200symbols to reachthe ISI level
for theopen-eyecondition,while thetraditional equalizer re-
quiresasequencemorethan1200 symbols long. Thismeans
areduction of six timesin thelengthof thetrainingperiod.

Following our investigation, let us analyzethe caseof a
moreinterfering channel. ConsidertheANSI CSA #4 chan-
nel [7]. This loop is known to be oneof the mostdifficult
testchannels to equalize. Figures9 and10 presentthe fre-
quency responseandthezerosdiagramfor thischannel. The
zeroson theunit-circle reflectin thespectralnull presentin
thefrequency response.

Theeigenvaluespreadof thischannel, whenconsidering a
4 - PAM inputandanequalizer with 64taps,canbeestimated
to be ÇÈ�×Ö�ÉÊ±o½ÙØ�Ë . Whenapplying the split operation such
a spreadis reducedto Ç¿�ÛÚ¼±o½ÜÖoÚ . Again, we canexpect
that themulti-split equalizerwill converge muchfasterthan
the traditional one. Figure11 shows the ISI evolution for
boththe traditional andthemulti-split equalizers. Thesolid
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Fig. 9. Frequency responseof theANSI CSA #4 loop channel

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Fig. 10. Zerosdiagram of the121-tapslong ANSI CSA #4 loop channel.

line in theplot grid representstheamount of ISI thatcanbe
consideredastheedgeof theopen-eyecondition.

For this secondchannel, themulti-split equalizerrequires
atrainingsequencealmost3000symbols long, while thetra-
ditional equalizerneedsabout12000 symbols to reachthe
open-eye condition. Thus,the trainingsequence canbe re-
ducedby a factorof four whenusingmulti-split equalizers.

In bothsimulationsweusethenormalizedLMS algorithm,
eitherfor thetraditional equalizeror themulti-split equalizer.
Theadaptationstep-sizewasalwayssetto ÝÞ� §ß�àJá .

IV. CONCLUSION

Theresultspresentedin this paper indicatethatthemulti-
split equalizercandiminish considerably the lengthof the
trainingsequence required by an adaptive equalizer. Chan-
nelsastheANSI CSA#4loopchannel,having zeroscloseto
theunit-circle,needmorethanafeed-forwardfilter to beper-
fectly equalized. A feedbackfilter is alsonecessary. Thus,
the multi-split equalizer could be usedas the feed-forward
filter, quickly opening theeye andallowing thefeedbackfil-
ter to startoperationmuchsooner. This would increasethe
overall throughput of thesystem.

Recently, structurescombining equalization anddecoding
in an iterative way, andusinga DFE asthe front end,were
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Fig. 11. ISI evolution for theANSI CSA#4 loop channel

introduced[9], [10]. Suchstructuresrequire theforward fil-
ter to opentheeyebefore thefeedback filter andthedecoder
start to operate. If we considerthe sametraining sequence
length for both the traditional and the multi-split equaliz-
ers,the laterwould presenta smallerISI level at theendof
thelearningprocess.Thus,coming backto thecaseof joint
equalization anddecoding, theuseof a multi-split equalizer
would yield a betterfirst iterationperformance.As statedin
[9], theperformanceof thewholestructureis highly depen-
denton theperformanceof thefirst iteration.

Finally, asshown in SectionII, thesplit operation doesnot
require any additional multiplication, just a set of addition
operations. Moreover its butterfly structure is very suitable
for VLSI implementation.
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