
REAL TIME IMPLEMENTATION OF A FACE

TRACKING

N.Malasne, F.Yang, M.Paindavoine
Laboratory LE2I, University of Burgundy,

BP 47870 21078 Dijon Cedex, France
Tel: (33)3 80 39 63 29 ; fax: (33) 3 80 39 59 10

e-mail: nmalasne@u-bourgogne.fr

ABSTRACT

This paper describes a system capable of realizing a face
detection and tracking in video sequences. In develop-
ing this system, we have used a RBF neural network to
locate and categorize faces of different dimensions. The
face tracker can be applied to a video communication
system which allows the users to move freely in front of
the camera while communicating. The system works at
several stages. At first, we extract useful parameters by
a low-pass filtering to compress data and we compose
our codebook vectors. Then, the RBF neural network
realizes a face detection and tracking on a specific board.

1 Introduction

A system capable of doing face localization and recog-
nition in real time has many applications in intelligent
man-machine interfaces and in other domains such as
very low bandwidth video conferencing, virtual actor
and video e-mail. We describe a system capable of de-
tecting and to track faces in video sequences using a
RBF neural network.
The Radial Basis Function (RBF) allows to make

learning in neural networks. This function makes it
possible to design a network with a good generaliza-
tion ability and a minimum number of nodes to avoid
unnecessary computational time. The RBF method is a
technique for interpolation in a high dimensional space.
RBF classifiers belong to the category of kernels classi-
fiers. They use an overlapping formed by simple kernel
functions to create complex decision regions. RBF net-
works are a recent addition to the face tracking and
analysis model because their main advantages are com-
putational simplicity and robust generalization. Mark
Rosenblum and al.[1] have developed a system of hu-
man expressions recognition from motion based on a
RBF network architecture. Howell and Buxton have
performed a learning identification with RBF method[2].
Our aim is to elaborate a quite efficient algorithm us-

ing a RBF network which can track and recognize faces
of different dimensions in real time in natural video se-
quences in any background. In the second section, we
present the RBF network model. Learning process and

node reduction are described. We show the system of
face tracking developed in the third section. We ex-
hibit the chosen method : extraction of useful param-
eters, RBF network architecture used. We display the
results and performances we have obtained with a video
sequence. Finally, we discuss about our hardware im-
plementation.

2 Architecture of the network

The architecture of a RBF network[3] [4] is composed
of 3 layers (see Figure 1). Each hidden node computes
a kernel function on input data and the output layer
achieves a weighted summation of the kernel functions.
Each node is characterized by 2 important associated
parameters : its center and the width of the radial func-
tion. A hidden node computes the highest output value
when the input data is close to its center and this out-
put decreases as the distance from the center increases.
Several distances can be used to estimate the distance
from a center but we usually use the Euclidian distance.
A Gaussian function is taken as the kernel function[5].
The whole network configuration is achieved by calculat-
ing centers and widths associated with the hidden nodes
and the weights of the connections from the hidden layer
to the output layer.
Input data are fully connected to the hidden layer

and this one is also fully connected to the output layer.
Each input vector hasM components. There are I RBF
nodes in the hidden layer. In addition, each RBF node
is characterized by 2 parameters, the center ci and the
width wi of its associated Gaussian function. The out-
put layer contains J nodes Oj representing J classes.
The connections from hidden nodes to output nodes are
weighted by multiplication values. Finally, each output
node yields a weighted sum of its inputs.

2.1 Learning process
At first, the learning problem is to determine the ap-
propriate Gaussian centers ci and widths wi. Then, the
RBF learning process consists in defining some functions
fj to satisfy the condition :

fj(xp) = ypj p = 1, ..., P j = 1, ..., J (1)



Input layer Centers Output layer

Figure 1: Architecture of a typical RBF network.

in which P and J are respectively the total number of
training patterns and the number of classes. (xp,ypj)
are the p-th training vectors, ypj being the response that
the output j have to yield when the xp training pattern
is presented to input. f(x) can be written as :

f(x) = ΣI
i=1aijΦ(‖x− ci‖) (2)

with i = 1, ..., I, j = 1, ..., J and Φ is a Gaussian function

Φ(‖x− ci‖) = 1√
2πwi

2
exp{−‖x− ci‖

2wi
2

} (3)

A pseudo inverse matrix technique yields the weight
aij associating the hidden layer with the output layer.
A way to design the network could be to associate a
Gaussian function with each training point in the M -
dimensional space. But in most of the applications, the
number of training vectors is large and this technique
becomes inefficient.

2.2 Node reduction
Initially, we have P training points in a M -dimensional
space. If it is possible, our aim is to reduce the number
of useful points. The algorithm which we use is inspired
on a clustering algorithm proposed by Musavi[6].

1. Take any point Ck and its associated radius wk (ini-
tially, wk = 0).

2. Find the nearest point Cl of the same class by using
the Euclidian distance.

3. Compute the mean of these 2 points. We obtain a
new point with its associated width ‖Ck,Cl‖

2 + wk.

4. Compute the distance D from the new mean to the
nearest point of all other classes.

5. If D > λR, then accept the merge of Ck and Cl

and start again from step 2. If the condition is not
satisfied, reject the merge and recover the 2 original
points and their widths then restart from step 1.

6. Repeat step 1 to 5 until all points of each class be
tested.

Finally, we obtain the Gaussian centers ci and their
widths wi(i = 1, ..., I ≤ P ) of the hidden nodes.

λ is the ”clustering parameter” (λ is a positive num-
ber). When λ increases, node reduction is limited, but
the accuracy increases. We use the value λ = 2 in our
case. We can see (Figure 2) the result after using this
clustering algorithm for 2 classes in a 2D feature space.

CATEGORY A

CATEGORY B

Figure 2: Regions mapping in a 2D space.

Notice that we obtain 2 non linear decision regions.
In fact, RBF can map spaces of any shapes (non-linear,
convex, disjoint spaces). In a M -dimensional space,
the decisions regions are a set of M -dimensional hyper-
spheres.

3 Experiments and results

3.1 Image sequence
Our sequence contains 74 images of 2 persons moving
in a room. This sequence was recorded in brightness
format. The original resolution is 240× 320. The frame
rate is 10 Hz. Any special lighting was used. Notice that
the size of the faces varies from 40 × 30 to 90 × 68. At
first, we have to learn the training faces. In our example,
we want to recognize 2 persons. We use 3 training faces
for each of them (see Figure 3). Each training face is a
window of size 40× 30.
Our aim is to locate and recognize faces in a video

sequence. So, it is very important to use a method as
low time consuming as possible. It is the reason why
we have to minimize the number of input data. Thus, a
downsampling is realized. So, a 1-dimensional smooth-
ing filtering is necessarily performed on the original im-
ages used. Only one brightness value out of six is taken



Figure 3: Learning faces

on each line of the images. So, the training vectors have
only 200 (5×40) components. The clustering algorithm
finds 2 centers and their widths for each class again. The
location and recognition is realized by scanning (scan
step=1) the image 240×320 with the 40×30 mask then
downsampling it. Each mask yields 200 components to
network input. The test results are presented in Tab.1.

Table 1: Test results
number of person in the sequence 141
right detection and identification 132 93.6 %

no detection 4 2.8 %
wrong detection 5 3.6 %

wrong identification 0 0 %

The feature extraction yields input vectors with less
components. So, we have reduced the computational
time a lot. Therefore, the hardware implementation are
feasible to realize a real-time recognition of faces. Here
are some result images :

Figure 4: Results

4 Hardware implementation

4.1 Computing complexity

Our aim is to realize a specific board integrating our
algorithm. We have chosen to use theNeurosight board
from General Vision[8]. This board contains a CCD
sensor (352× 288 pixels), a FPGA Xilinx Spartan2-100,
2 memory banks (512Ko each one) and the 2 specific
chips ZISC (Zero Instruction Set Computer chip). One
ZISC chip contains 78 RBF-like neurons with aM = 64

components length vector, the distance computing

d1(x) =
∑

1≤m≤M

|xm − cm| (4)

and the Heaviside decision function

f(x) =

{
1 d(x) ≤ σ

0 d(x) > σ
(5)

We have to adapt the complexity of the system to this
board. We have done some choices. At first, we reduce
the size of the original image by keeping only 1 line out
of 4. This new image obtained(its size is 352 × 72) is
now analysed with a window 32×8. On each line of each
window, we compute the averages of the 8 consecutive
4 pixels blocks. Each window yields a 64 components
length vector to be analysed with ZISC. The number of
windows to analyse in an image is

Nv = 	L− Lv

Pc
+ 1
	C − Cv

Pl
+ 1
 (6)

where L is the number of rows in the image, C is
the number of columns, Lv is the number of rows in a
window, Cv the number of its columns, Pc the scan step
along the columns of the image and Pl the scan step
among the rows. The equations

A1 = (
Cv

B
− 1)×B × Lv (7)

D1 = B × Lv (8)

represent the number A1 of additions and is the number
D1 of divisions we need to extract the parameters of
the first window of each column. B corresponds to the
number of blocks per window line. The scan step on one
column is Pc = 1, so we only need to compute 8 new
parameters to have the next characteristic vector. The
equations

A2 = (
Cv

B
− 1)×B (9)

D2 = B (10)

represent respectively the number of additions and di-
visions we need to compute these new components and
the equations

A3 = (
Cv

B
− 1)B(Lv + 	L− Lv

Pc

)	C − Cv

Pl
+ 1
 (11)

D = B(Lv + 	L− Lv

Pc

)	C − Cv

Pl
+ 1
 (12)

correspond to the number of additions and divisions we
need to extract all the vectors in a whole image.
We take L = 72, C = 352, Lv = 8, Cv = 32 and

Pc = 1, Pl = 2, we obtain Nv = 10465 windows to test
(65 windows per columns and 161 windows per line).



We need 278208 additions and 92736 divisions to extract
from a image all the vectors to test with neurons.
Now, we are going to estimate the complexity of the

ZISC neurons. The numbers A3 of additions and S of
subtractions we need to compute the distance d1(x) for
all the windows are obtained with the equations

A4 = (M − 1)× I ×Nv (13)

S =M × I ×Nv (14)

where M represents the number of components in an
input vector and I the number of neurons used. If
all the neurons are used on both the ZISC, we take
I = 156 and we have A = A3 + A4 = 103.2M additions
et S = 104.5M soustractions. Then, each neuron com-
pare the computing distance with the distance thresh-
old determined during the learning step. We have such
comparisons as neurons used. So, the equation

C = Nv × (I − 1) (15)

represents the maximal number of comparison we
need to compare all the vectors contained in a image.
We obtain C = 1622075 comparisons with I = 156.

4.2 computing time
We have estimated the computing time we need to make
our system working. We have determinated the number
of clock periods (we note TClk) required for each step of
the process to analyze one image.
Each image has 65 windows per columns to be tested.

The first window requires 256TClk to compute and put
the 64 first components in a FIFO then 64TClk to put
this first vector in ZISC. All neurons of this one yield
a response after 54TClk (neurons in parallel mode). So,
we need 374TClk to test this first window. We only need
to compute 8 new components to have a new vector to
test. This one is obtained during ZISC take a decision
for the previous one. Next windows of this column need
64TClk + 54TClk) × 64 = 7552TClk each of them to be
tested. The first column is analyzed in 7926TClk. Next
columns requires 320TClk + (64TClk + 54TClk) × 64 =
7872TClk to be checked. We only need 320TClk(374−54)
to compute the first vector of next column. We have 161
columns to check. We need about 1.27MTClk to test all
the windows in an image. The frequency of the oscillator
frequency on the board is 33Mhz (TClk = 30ns). Test
one image is realized in about 38ms. It’s smaller than
40ms which is the threshold to respect the real time
computing (25 frames per second).

5 Conclusion and perspectives

Our aim was to realize a first simple hardware imple-
mentation of a learned faces tracker. We used the spe-
cific chip ZISC to recognize parameters extracted from
a image. Each ZISC chip contains 78 parallel neu-
rons. This architecture requires a high volume comput-
ing. The system is capable of recognizing several persons

in a video sequence in real time. At the moment, the
results are not accurate enough because each face is rep-
resented with too low parameters. Our next hardware
will use some bigger vectors (128 then 256 components)
to increase the accuracy. We would like to implement a
RBF-like neural network on a FPGA chip too.

References

[1] M. Rosenblum, Y. Yacoob and S.V. Larry, “Human
expression recognition from motion using a radial
basis function network architecture,” IEEE Transac-
tion on neural networks, Vol.7, No.5, pp. 1121-1138,
1996.

[2] A.J. Howell, Y. Buxton and S.V. Larry, “Learning
identity with radial basis function networks,” Neu-
rocomputing, Elsevier, Vol.20, pp. 15-34, 1998.

[3] M.J.D. Powell, “Radial Basis Functions for multi-
variate interpolation: A review,” Algorithms for ap-
proximation, Clarendon Press, pp. 143-167, Oxford,
1987.

[4] I. Park and I.W. Sandberg, “Universal approxima-
tion using radial basis function networks,” Neural
Computations, Vol.3, pp. 246-257, 1991.

[5] S. Lee and R.M. Kil, “A Gaussian potential function
network with hierarchically self-organizing learn-
ing,” Neural Networks, Vol.4, pp. 207-224, 1991.

[6] M.T. Musavi, W. Ahmed and al, “On the training
of radial basis function classifiers,” Neural Networks,
Vol.5, pp. 595-603, 1992.

[7] H. A.Rowley, S. Baluja, T. Kanade, “Neural
Network-Based Face Detection,” PAMI, 1998.

[8] Web site : www.general-vision.com


