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ABSTRACT

This paper deals with the separation of convolutive mix-
tures of independent source signals. Starting from a fre-
quency point of view, we consider a joint diagonalization
criterion. Integration of the latter over the frequency
domain leads to contrasts which are valid for both iid
and non iid sources. A generalization of these contrasts
is proposed: it aims at obtaining contrasts with im-
proved statistical performances. A link with existing
time-domain contrasts is established. A simple gradient
based method for the optimization of the contrasts is
proposed and evaluated through simulation tests.

1 INTRODUCTION

Source separation has been a research field of increas-
ing interest in the last years. Possible applications can
be found in many scientific and engineering fields such
as radio-telescopy, data communication, seismic explo-
ration, . . . .

The separation of instantaneous mixtures, also known
as the ICA problem (Independent Component Anal-
ysis) was first studied in [2]; some generalizations of
the contrasts were proposed in this case [9]. However,
the separation of convolutive mixtures remains a chal-
lenging problem. Under the assumption of iid sources,
time-domain approaches proved to be successfull in de-
signing various contrast functions [3, 6]. A frequency-
domain framework has also been proposed [1]. This ap-
proach has been extended in order to exploit the time-
dependent structure of the signals and consequently help
us overcome the difficulty of separating non iid sources
[8]. Nevertheless, this approach leads to contrasts which
may be difficult to estimate statistically and require a
large data size. The goal of this work is to try to simplify
these contrasts, and relate them to simpler time-domain
contrasts.

We first formulate the problem and recall some ex-
isting results. We then introduce some new frequency-
domain contrasts which allow us to derive time-domain
ones in Section 4. A simple parametrization of the sepa-
rating system is proposed in Section 5 and a gradient de-
scent optimization of the resulting cost function is then

realized and applied to simulation examples.

2 PROBLEM FORMULATION

We consider a convolutive mixture of N ∈ N∗ unknown
source signals. The output of the mixture is represented
by the N -dimensional observation vector:

x(n) , (x1(n), . . . , xN (n))T

=
∑

k∈Z
c(k)s(n− k) + b(n) (1)

where s(n) = (s1(n), . . . , sN (n))T is a N × 1 source vec-
tor, b(n) is a N ×1 noise vector and c(n)n∈Z represents
the unknown linear time invariant (LTI) mixing system.

The following assumptions are made in this paper:

A.1 The sources si(n), i ∈ {1, . . . , N} are mutually
independent random sequences which are uncorre-
lated, and have unit variance. The trispectrum of
source si(n) (i.e. the Fourier transform with respect
to (τ1, τ2, τ3) ∈ Z3 of Cum[si(n), s∗i (n + τ1), si(n +
τ2), s∗i (n + τ3)]) is assumed to be defined and will be
denoted by Γ4

i (ω1, ω2, ω3).

A.2 For all (i, j) ∈ {1, . . . , N}2, the filter with impulse
response (cij(n))n∈Z is stable. The frequency response
matrix C(ω) ,

∑∞
k=−∞ c(k)e−ikω therefore exists and

is supposed invertible for all ω ∈ [−π, π).

A.3 The noise (b(n))n∈Z is Gaussian, zero-mean, inde-
pendent of the source vector (s(n))n∈Z and stationary
with known spectrum density matrix.

The multichannel blind deconvolution problem con-
sists in estimating a LTI filter (h(n))n∈Z such that the
vector:

y(n) ,
∑

k∈Z
h(k)x(n− k) (2)

restores the N input signals (si(n))n∈Z, i ∈ {1, . . . , N}.
Because of some remaining indeterminacies, the best

one can expect is to obtain a separating LTI filter such
that:

H(ω)C(ω) = P ei(Θ+Dω) (3)
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Figure 1: The global system

where P is a permutation matrix, Θ is a real diagonal
matrix and D is an integer diagonal matrix. When such
a property holds, we will say that a type-I separation
is achieved. Sometimes however, we are only able to
guarantee that

H(ω)C(ω) = P eiΦ(ω) (4)

where Φ(ω) is a real diagonal matrix, and we will say
that a type-II solution is obtained.

3 FREQUENCY DOMAIN CONTRASTS

3.1 Contrasts
Contrasts were first introduced in [2]. We use here a
definition similar to that given in [8].

Let A denote the set of N×1 random vectors satifying
assumption A.1 and G be the set of systems composed of
a mixing system satisfying A.2 followed by a separating
system {h}. Let YA be the set of random vectors ob-
tained with relations (1) and (2) where s lies in A and
the global system lies in G. The subset of G such that
equation (3) (resp. (4)) holds is denoted PI (resp. PII).

Definition 1 A type-I (resp. type-II) contrast is a real
valued function on YA satisfiying the following two re-
quirements:

∀s ∈ A ∀g ∈ G I([g]s) ≤ I(s)
∀s ∈ A ∀g ∈ G I([g]s) = I(s) ⇒ g ∈ PI (resp.PII)

Consequently, the maximisation of a type-I contrast
with respect to {g} leads to the separation of the
sources. The maximisation of a type-II contrast leaves
an all-pass filtering ambiguity; we should mention how-
ever that if we restrict ourselves to finite impulse re-
sponse (FIR) filters, the all-pass filtering ambiguity re-
duces to a delay ambiguity.

3.2 A joint diagonalization criterion
Let us define:

I(ω1, ω2, ω3) =
∑

i,j

|Γ4
j (ω1, ω2, ω3)|2|Gij(−ω1 − ω2 − ω3)|2|Gij(−ω1)|2

=
∑

il1l2

|K4
iil1l2(ω1, ω2, ω3)|2 (5)

where (K4
i1i2l1l2

(ω1, ω2, ω3))i1,i2,l1,l2 correspond to the
cross-trispectra of the outputs i1, i2, l1, l2 of the global

system. I was introduced in [8] and was shown to be
equal to a joint diagonalization criterion of a given set
of matrices.

It is important to note that, I(ω1, ω2, ω3) is a func-
tion of G. In practice, the mixed signals x(n) are pre-
whitened with a pre-whitening filter {v}. The sepa-
rating system can thus be split in {h} = {f ∗ v}; the
criterion I then depends on the remaining para-unitary
separating system {f} only. For notation concision, we
will not make this dependence explicit for I(ω1, ω2, ω3)
or any other criteria which will be derived from it.

It was stated in [8] that,

IE ,
∫ 2π

0

∫ 2π

0

(∫

E(ω,ν)

I(ω,
ν + α

2
,
ν − α

2
) dα

)
dω dν

(6)
is a type-II contrast under the following assumption:

A.4 For almost all (ω, ν) ∈ [0, 2π)2, there exists a set
E(ω, ν) ⊂ [−2π, 2π) such that, for at least N − 1
sources:

∫

E(ω,ν)

∣∣∣Γ4
j (ω,

ν + α

2
,
ν − α

2
)
∣∣∣
2

dα 6= 0. (7)

4 GENERALIZED CONTRASTS

4.1 New contrasts
Let us recall the following property [7, 11]:

Property 1 Let I1 be a real-valued function on YA and
I2 be a contrast. If

∀s ∈ A I1(s) = I2(s) (8)
∀y ∈ YA I1(y) ≤ I2(y) (9)

then, I1 is a contrast.

Let us define:

J(ω1, ω2, ω3) ,
∑

il1l2

ηil1l2 |K4
iil1l2(ω1, ω2, ω3)|2 (10)

where: ηil1l2

{
= 1 if i = l1 = l2

≤ 1 otherwise.
(11)

We can generalize the contrast (6) and consider now:

JE ,
∫ 2π

0

∫ 2π

0

(∫

E(ω,ν)

J(ω,
ν + α

2
,
ν − α

2
) dα

)
dω dν

(12)
According to (5), (6) and the preceding definition,

we have JE ≤ IE. Furthermore, when the outputs of
the global system are equal to the sources up to some
permutation and all-pass filtering operations, the terms
in (10) and (5) for which one of the indices i, l1, l2 differs
from the two others vanish. Consequently we have in
this case JE = IE = maxg∈G IE. Using Property 1, we
conclude that:
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Proposition 1 Under assumption A.4, JE is a type-II
contrast.

Using the same arguments, and results from [8] it can
be proved that:

Proposition 2 Under assumption

A.5 For almost all (ω, ν) ∈ [0, 2π)2, there exists αω,ν ∈
[−2π, 2π) such that for at least N − 1 sources:

Γ4
j

(
ω,

ν + αω,ν

2
,
ν − αω,ν

2

)
6= 0, (13)

the following expression is a type-II contrast:

J̄ ,
∫ 2π

0

∫ 2π

0

J
(
ω,

ν + αω,ν

2
,
ν − αω,ν

2

)
dω dν (14)

4.2 Connection with known time-domain con-
trasts

Using the 2π-periodicities of J(ω1, ω2, ω3), we can prove
after some changes of variables that:

1
2
J[−2π,2π) =

∫ π

−π

∫ π

−π

∫ π

−π

J(ω1, ω2, ω3) dω1 dω2 dω3

(15)
Using Parseval’s equality and (10), equation (15) yields:

1
16π3

J[−2π,2π) =
∑

il1l2

∑
τ1τ2τ3

ηil1l2 |κ4
iil1l2(τ1, τ2, τ3)|2

(16)

where: κ4
iil1l2(τ1, τ2, τ3) ,

Cum[yi(n), y∗i (n + τ1), yl1(n + τ2), y∗l2(n + τ3)]

By setting to zero some of the weighting factors ηil1l2 ,
the expressions of the obtained criteria may appear sim-
pler than that of IE since they contain fewer terms. As
a first special case, we can choose ηil1l2 = δl1−l2 , where
δ stands for the Kronecker symbol. We have then:

1
16π3

J[−2π,2π) =
∑

il

∑
τ1τ2τ3

|κ4
iill(τ1, τ2, τ3)|2 (17)

This reminds us contrasts introduced in [5] for instanta-
neous mixtures and in [11] for the convolutive iid case.
In particular, extensions to the convolutive case of con-
trasts introduced by L. Delathauwer and E. Moreau for
instantaneous mixtures can be obtained in this way. An
alternative choice for the weighting factors is ηil1l2 =
δl1−i. Then, the contrast J[−2π,2π)/(16π3) can be writ-
ten:

1
16π3

J[−2π,2π) =
∑

il

∑
τ1τ2τ3

|κ4
iiil(τ1, τ2, τ3)|2 (18)

By choosing ηil1l2 = δi−l1δi−l2 , we obtain the simplest
form of the contrast:

1
16π3

J[−2π,2π) =
∑

i

∑
τ1τ2τ3

|κ4
iiii(τ1, τ2, τ3)|2 , ζ (19)

4.3 Further simplifications for source cumulant
fields with limited support

The contrasts proposed in the preceding section may
be simplified for source signals which have only a re-
stricted number of non-zero auto-cumulants. Invoking
again Property 1, we can indeed see that:

Proposition 3 If the sources have fourth order cumu-
lants with support S, one still obtains a contrast by re-
placing the infinite sum on τ1, τ2, τ3 in (16), (17), (18)
or (19) by sum over S.

It is clear that the support of the cumulant fields of
the outputs (yi(n))n∈Z, i ∈ {1, . . . , N}, of the global
system may be much larger than S. This means that
Proposition 3 often leads to a substantial reduction of
the number of terms in the contrasts derived in the pre-
vious section.

Consider for instance that the sources are de-
scribed by a so-called stochastic volatility model, i.e.
∀i ∈ {1, . . . , N} si(n) = ai(n)wi(n) where ai(n),
wj(n) are stationnary, mutually independent random
sequences with unit variance and wj(n) moreover is iid,
zero-mean and Gaussian. One can check that this ran-
dom process is uncorrated but non iid. The fourth-order
auto-cumulant equals:

Cum[si(n), si(n + τ1), si(n + τ2), si(n + τ3)] =
(Mai(τ1, τ2, τ3)− 1)(δτ1δτ2−τ3 + δτ2δτ1−τ3 + δτ3δτ1−τ2)

(20)

where, E{.} being the mathematical expectation:

Mai(τ1, τ2, τ3) , E{ai(n)ai(n + τ1)ai(n + τ2)ai(n + τ3)}

Using Proposition 3, the contrast given by (19) re-
duces to:

ζ =
∑

i

∑
τ

|κ4
iiii(0, τ, τ)|2+

|κ4
iiii(τ, 0, τ)|2 + |κ4

iiii(τ, τ, 0)|2

=
∑

i

[
|κ4

iiii(0, 0, 0)|2 + 3
∑

τ 6=0

|κ4
iiii(0, τ, τ)|2

]
.

(21)

Furthermore, if the random sequence ai(n) is a q-th
order moving average (MA) process, the fourth-order
cumulants given by (20) vanish whenever one of the in-
dices τ1,τ2 or τ3 is greater than q. Consequently, the
sum on τ in equation (21) can be further restricted to
|τ | ≤ q.

5 SIMULATION

5.1 A simple gradient algorithm
As mentionned in paragraph 3.2, the separating filter
can be decomposed in a prewhitening operation followed
by a separating paraunitary filter {f}. Since the con-
trasts presented in this paper depend on {f} only, a
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parametrization of {f} will lead to a parametrization of
the outputs and of the contrasts. One can then apply
classical optimization methods (gradient descent,...) in
order to complete the source separation. In particular,
a lossless lattice representation can be used, which in
the case of two sources, reads:

F(ω) = R(θL)D(ω) . . . R(θ2)D(ω) R(θ1) where

R(θ) ,
(

cos θ − sin θ
sin θ cos θ

)
D(ω) ,

(
1 0
0 e−iω

)
.

5.2 Simulation results
According to the preceding parametrization, FIR para-
unitary filters {c} were generated, by choosing randomly
the parameters (θ1, θ2, θ3) in [0, π

2 ]. A gradient opti-
mization of (21) was realized with stochastic volatility
sources and PAM4 iid sources. Sample sizes of 4096 and
200 realizations were considered.

The optimization algorithm was initialized in the
neighborhood of the true parameters (with a standard
deviation of about 10 percent) so as to avoid local min-
ima problems. The algorithm was then successful in
separating the sources; mean square errors on the recon-
structed sources, averaged on 200 realizations are given
in Table 1. This shows that the proposed method is
useful for separating possibly non iid sources, provided
a rough initial guess of the solution is available. This
prior information could for example result from a semi-
blind approach.

sources MSE
stochastic volatility 1.9×10−3

PAM4 iid 5.1×10−5

Table 1: Average mean square errors on reconstructed
sources
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Figure 2: Separation of a mixture of PAM4 sources
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