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Abstract
The normalized least mean square (NLMS) algorithm

is known to result in a faster convergence than the least

mean square (LMS) algorithm but at the expense of a

larger steady-state error. A time-varying normalized

mixed-norm LMS-least mean fourth (LMF) algorithm

is presented in this work to preserve the fast conver-

gence of the NLMS algorithm while resulting in a lower

steady-state error. The simulation results show that

a substantial improvement, in both convergence time

and steady state error, can be obtained with this mixed-

norm algorithm.

1 Introduction
Due to its simplicity, the least mean-square (LMS) [1]

algorithm is the most widely used algorithm for adaptive

�lters in many applications. The least mean-fourth (LMF)

[2] algorithm was also proposed later as a special case of

the more general family of steepest descent algorithms [1]

with 2k error norms, k being a positive integer.

But for both of these algorithms, the convergence be-

havior depends on the condition number, ratio of the max-

imum to the minimum eigenvalues of the input signal au-

tocorrelation matrix R = E[xnx
T

n
], where xn is the input

signal.

To remove the dependency of the convergence of the

LMS algorithm on the condition number, the normalized

least-mean square (NLMS) [3] was introduced. Great im-

provement in convergence is obtained through the use of

the NLMS algorithm over the LMS algorithm at the ex-

pense of a larger steady-state error.

A mixed-norm algorithm[4], combining both the LMS

and the LMF algorithms, will su�er as well from the prob-

lem of the eigenvalue spread dependency. To circumvent

this problem, a normalized version of the mixed-norm

LMS-LMF algorithm must therefore be used.

It is well known that fast convergence and lower steady-

state error are two conicting parameters in general adap-

tive �ltering. The NLMS algorithm results in the fastest

convergence but only at the expense of a high steady-

state error [5]. A promising solution to this conict is

a time-varying normalized mixed-norm LMS-LMF algo-

rithm. In this mixed-norm algorithm and during the tran-

sient state, the NLMS algorithm is used to speed up the

algorithm's convergence. However when the steady-state

is reached, the algorithm automatically switches from the

NLMS to the normalized LMF (NLMF) [6], thanks to a

built-in "gear shifting" property, to secure a lower steady-

state error.

In this work, the performance of the time-varying nor-

malized mixed-norm LMS-LMF algorithm is evaluated. It

is shown that great improvement in both convergence and

steady state-state error is obtained through the use of this

algorithm.

2 Proposed Algorithm
The mixed-norm LMS-LMF algorithm is based on the

minimization of the following cost function [7]:

Jn = �E[e2
n
] + (1� �)E[e4

n
]; (1)

where � is a positive mixing parameter in the interval

[0,1]. The error is de�ned as en = dn + wn � xT
n
cn,

where dn is the desired value, cn is the �lter coeÆcient

of the adaptive �lter, xn is the input vector and wn is

the additive noise. A major drawback of this algorithm is,

however, the choice of the mixing parameter that is hard

to �x a priori for an unknown system.

In [7], a self-adapting LMS-LMF algorithm with a

time-varying weighting factor was proposed. This time-

variation of the weighting factor was achieved by allowing

for a variable mixing factor that is updated every itera-

tion using the modi�ed variable step-size (MVSS) algo-

rithm proposed in [8]. The variable weight mixed-norm

LMS-LMF algorithm was de�ned to minimize the follow-

ing performance measure:

Jn = �nE[e2
n
] + (1� �n)E[e4

n
]; (2)

where �n, chosen in [0; 1] such that the unimodal char-

acter of the above cost is preserved, is a time-varying

parameter updated according to [8]:

�n+1 = Æ�n + p2
n
; (3)



and

pn = �pn�1 + (1� �)enen�1: (4)

The parameters Æ and �, both con�ned to the interval

[0,1], are exponential weighting parameters that govern

the averaging time constant, i.e., the quality of estimation

of the algorithm, and  > 0. Note that the algorithm

de�ned by (1) is restored when Æ = 1 and  = 0, which

forces �n to have a �xed value.

Based on this motivation, the weight mixed-norm

LMS-LMF algorithm for recursively adjusting the coef-

�cients of the system is expressed in the following form:

cn+1 = cn + �[�nen + 2(1� �n)e
3
n
]xn; (5)

where � is the step size.

As mentioned earlier and because of its reliance on the

LMS and the LMF, the algorithm de�ned by (5) will be

a�ected by the eigenvalue spread of the autocorrelation

matrix of the input signal. To overcome this problem, a

normalized version of this algorithm can be set up and

resulting in the following weight update equation:

cn+1 = cn + ��[�nen + 2(1� �n)e
3
n
]
xn

kxnk2
; (6)

where kxnk
2 is the Euclidean norm of the input vector

xn and �� is the step size.

3 Convergence Analysis
Throughout our ensuing convergence analysis, the follow-

ing commonly-used assumptions [1]-[2] are made:

A.1 The noise sequence fwng is statistically indepen-

dent of the input signal sequence fxng and both

sequences have zero mean.

A.2 The noise wn has zero odd moments.

A.3 The weight error vector, to be de�ned later, is in-

dependent of the input xn.

Examining the mean behavior of Equation (6) under the

above assumptions, suÆcient conditions for convergence

of the proposed algorithm in-the-mean can be derived and

are stated as follows.

Proposition 1 For the algorithm de�ned by (6) to con-

verge in-the-mean, a suÆcient condition is that �� be cho-

sen in the following range:

0 < �� <
2

E[�n] + 2(1�E[�n])[3�2w + 1]
; (7)

where �2
w

is the noise power and E[�n] is the mean of

the mixing parameter.

It is very clear that if �n = 1, both the NLMS algorithm

and its step size range, that is 0 < �� < 2, are recovered.

4 Steady-State Analysis
In general the adaptation scheme de�ned in (6) can be

written in the following form:

cn+1 = cn + ��
xn

kxnk2
fe(n); (8)

where fe(n) denotes a general scalar function of the out-

put estimation error en and in our case fe(n) = �nen +

2(1� �n)e
3
n
.

An important measure for an adaptive algorithm is its

steady-state mean-square-error (MSE), which is de�ned

as:

MSE = lim
n!1

E
�
e2
n

�
= lim

n!1

E
n�

wn � xT
n
vn

�2o
: (9)

Under the often realistic assumption A.1, we �nd that

the MSE is equivalently given by:

MSE = �2
w
+ lim

n!1

E
n�
xT
n
vn

�2o
: (10)

4.1 Fundamental Energy Conservation

Relation
In this section the steady-state error analysis of the pro-

posed algorithm is carried out using the concept of feed-

back approach [9] to derive the energy conservation rela-

tion. First let us de�ne the following a-priori estimation

error, ea(n) = xT
n
vn, and the a-posteriori estimation er-

ror, ep(n) = xT
n
vn+1. It is easy to show that the esti-

mation error, en, and the a-priori error, ea(n), are related

by en = ea(n) + wn. Also, it is easy to show that the

a-poteriori error, ep(n), can be expressed in the following

form:

ep(n) = ea(n)�
��

�̂n
fe(n); (11)

where �̂n = 1= kxnk
2
. Substituting (11) into (8) results

into the following update relation:

vn+1 = vn � �̂nxn [ea(n)� ep(n)] : (12)

By evaluating the energies of both sides of the above

equation, the following new relation is obtained:

kvn+1k
2
+ �̂nkea(n)k

2 = kvnk
2
+ �̂nkep(n)k

2: (13)

4.2 Steady-State Performance Analysis
Recall that we are interested in evaluating the MSE of

the adaptive �lter once its reaches the steady state. To

do so, we resort to (13) and note that in steady-state

E[kvn+1k
2
] = E[kvnk

2
], so that by taking expectations

of both sides of (13) we obtain the equality:

E
�
�̂nkea(n)k

2
�
= E

�
�̂nkep(n)k

2
�
: (14)



Since ep(n) is itself a function of ea(n), Equation (14)

collapses to the following fundamental error variance re-

lation in terms of the desired but unknown ea(n) only

E
�
�̂nkea(n)k

2
�
= E

�
�̂nkea(n)�

��

�̂n
fe(n)k

2

�
: (15)

The above equation can now be solved for the steady-

state excess mean-square-error (EMSE) de�ned as:

� = lim
n!1

E
n�
xT
n
vn

�2o
= lim

n!1

E
�
e2
a
(n)

�
:

Observe from (10) that the desired MSE is given by

MSE = �2
w
+ �, so that �nding � is equivalent to �nding

the MSE. Equation (15) can be re-written as:

2��E [ea(n)fe(n)] = ��2E
h
kxnk

2
f2
e
(n)

i
: (16)

Substituting fe(n) in (16) and taking assumptions A.1

and A.3 into account, results in:

[a� ��b]E

"
e2
a
(n)

kxnk
2

#
= ��cE

"
1

kxnk
2

#
; (17)

where a = 2 [E[�n] + 6(1�E[�n])], b =�
E[�2

n
] + 12E[�n(1� �n)]�

2
w
+ 36E[(1� �n)

2]�4
w

�
,

c =
�
E[�2

n
]�2
w
+ 4E[�n(1� �n)]�

4
w
+ 4E[(1� �n)

2]�6
w

�
,

�6
w
= E[w6

n
], and �4

w
= E[w4

n
].

Two cases can be considered for the evaluation of the

expression E
h
e
2

a
(n)

kxnk
2

i
. These are detailed in the ensu-

ing analysis. But before doing so, let us state one more

assumption needed for the derivations.

A.4 In steady state, ��2 kxnk
2
is statistically indepen-

dent of e2
a
(n).

Assumption A.4 in fact becomes very realistic for long

�lter lengths. Furthermore, the case of larger values of ��

is considered in assumption A.4.

Case 1: Under assumption A.4, expression E
h
e
2

a
(n)

kxnk
2

i
becomes:

E

"
e2
a
(n)

��2 kxnk
2

#
= E

�
e2
a
(n)

�
E

"
1

��2 kxnk
2

#
; (18)

so that (17) leads to the excess MSE for the proposed

algorithm:

�proposed =
��c

a� ��b
: (19)

Similarly the excess MSE for the NLMS algorithm will

be:

�NLMS =
���2

w

2� ��
: (20)

Case 2: Under the following approximation ([1], pp.

443):

E

"
e2
a
(n)

kxnk
2

#
�

E
�
e2
a
(n)

�
E
h
kxnk

2
i ; (21)

expression (17) leads to the excessMSE for the proposed

algorithm

�proposed =
��c

a� ��b
E

"
1

kxnk
2

#
tr fRg : (22)

And in the case of the NLMS algorithm this can be found

to be equal to:

�NLMS =
���2

w

2� ��
E

"
1

kxnk
2

#
tr fRg : (23)

In the above two cases, the ratio of the excess MSE

of the two algorithms for the same step size �� is given by:

�proposed

�NLMS

=
[2� ��] c

[a� ��b]�2
w

; (24)

where it is diÆcult to draw a decisive conclusion about

the behavior of the two algorithms, and only special cases

are considered and unfortunately due to space limitations

these are not reported here.

5 Simulation results
The performance of the proposed algorithm, the time-

varying normalized mixed-norm LMS-LMF algorithm, is

compared with that of the NLMS algorithm. Experiments

are carried out where an unknown system is to be iden-

ti�ed under noisy conditions. The unknown system is

a non-minimum phase channel. The input signal xn to

both the unknown system and the adaptive �lter is ob-

tained by passing a zero-mean white Gaussian sequence

through a channel that is used to vary the eigenvalue

spread of the autocorrelation matrix of the input signal.

The example considered for the sequence fxng has an

eigenvalue spread of 68.9. The additive noise, wn, is a

zero-mean and uniformly distributed. The signal to noise

ratio is set to be equal to 20 dB and the performance

measure considered is the normalized weight error norm

10log10jjcn � coptjj
2=jjcoptjj

2. Results are obtained by

averaging over 600 independent runs. The proposed al-

gorithm is implemented with the parameters Æ = 0:97,

� = 0:98,  = 10�2, �0 = 0:8 and p0 = 0.

Figure 1 compares the fastest convergence characteris-

tics of both the proposed algorithm and the NLMS algo-

rithm. It can be seen from this �gure that the proposed

algorithm converges as fast as the NLMS algorithm but

results in a lower weight mismatch. An improvement of 25

dB is obtained through the use of the proposed algorithm.



Also, as shown in Fig. 2, the proposed algorithm outper-

forms the NLMS algorithm, for the lowest steady-state er-

ror reached by the later, thanks to its built-in gear-shifting

mechanism which gives it an extra degree of freedom in

this region.
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Figure 1: Fastest convergence characteristics of the

proposed and NLMS algorithms, �proposed = 0:55,

�NLMS = 1:00.

The fast convergence obtained by the proposed algo-

rithm can be justi�ed by the fact that when far from the

optimum solution, this algorithm exhibits faster conver-

gence than the NLMS algorithm by automatically increas-

ing the step size (gear-shifting property).
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Figure 2: Convergence characteristics of the proposed

and NLMS algorithms for the lowest steady-state er-

ror reached by the NLMS algorithm, �proposed = 0:65,

�NLMS = :0055.

Finally, from the viewpoint of computational load the

proposed algorithm requires an additional seven multipli-

cations and three additions when compared to the �xed

mixed-norm algorithm de�ned by (1), and only eleven

multiplications and six additions when compared to the

NLMS algorithm. The small computational over head of

the proposed algorithm is therefore well worth the gain in

the steady-state error reduction it brings about.

6 Conclusion
In this work, a normalized time-varying mixed-norm algo-

rithm is proposed where a combination of the LMS and

the LMF algorithms is incorporated using the concept

of variable step-size LMS adaptation. It is found that

the proposed algorithm has the fast convergence prop-

erty of the NLMS algorithm while resulting in a lower

steady-state error, therefore eliminating the conict be-

tween these two parameters, i.e., fast convergence and

low steady-state error. Finally, the consistency of the per-

formance of the proposed algorithm has been con�rmed

by other simulation results which are not reported here.
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