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Abstract

This paper presents a block type algorithm which
determines the ”minimal” nonlinear feedback shift
register (NLFSR) that generates a given sequence.
Minimality is defined with respect to a total or-
dering between structural vectors that takes into
account the implementation cost.

1 Introduction

In this paper a block type algorithm is developed
which determines the minimal NLFSR that gener-
ates a given finite sequence with elements in a field
F . The proposed algorithm combines a total or-
dering, a linear dependence test and a minimality
test. The total ordering facilitates the evaluation
of the NLFSR. It is necessitated by the fact that
each NLFSR is characterized by a structural mul-
tiindex representing the order of nonlinearities, the
main signal products (called primary signals) and
the maximum delays. The coefficients of a NLFSR
producing the given signal live in the null space of
a suitable matrix. Hence, each NLFSR amounts
to expressing a column of the above matrix as a
linear combination of preceding columns. A spe-
cial feature of this matrix is that the lengths of its
columns are not the same. This complication re-
quires a more careful analysis of linear dependence.
The linear dependence test achieves the above goal
via manipulation of column subblocks and a proper
adaptation of the FIA algorithm [2]. The third in-
gredient of the algorithm matches the linear depen-
dence test with the total ordering. In this manner it
eventually determines the NLFSR that is minimal
with respect to the above ordering.
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2 Regular representation

Suppose that the given sequence x(n), 1 ≤ n ≤ N
is generated by the following nonlinear source:

x(n) =
L∑

i=1

cix(n− i)+

+
p22∑

i1=0

Li1∑

i=1

ci,i1x(n− i)x(n− i− i1) + · · ·+

+
pk2∑

i1=0

· · ·
pkk−

Pk−2
l=1 il∑

ik−1=0

Li1,··· ,ik−1∑

i=1

ci,i1,··· ,ik−1x(n− i) ·

·
k−1∏

j=1

x(n− i−
j∑

w=1

iw), n > M (1)

In the so-called regular representation (1) which
defines a recursively computable expression, k de-
notes the maximum order (degree) of nonlinearity
[4]. The linear part is characterized by its or-
der L and the corresponding coefficients ci, 1 ≤
i ≤ L. The second order part is parameterized
by the orders p22 and Li1 and the quadratic co-
efficients ci,i1 , 1 ≤ i ≤ Li1 , 0 ≤ i1 ≤ p22. The
higher order terms are similarly defined with pm2 ≤
pm3 ≤ · · · ≤ pmm, 3 ≤ m ≤ k. The param-
eters L,Li1 , · · · , p22, p32, · · · are nonnegative inte-
gers. The coefficients ci, ci,i1 , · · · , ci,i1,··· ,ik−1

and
the resulting signal values reside in a field F and ad-
ditions and multiplications are the field operations.
Finally, parameter M is related to the length of
initial conditions of the NLFSR.

The structural parameters of (1) can be incorpo-
rated into the vector

u = (k, r(k), S(k, r(k))) (2)

where r(k) = (p22 | p32 p33 | · · · | pk2 · · · )
and S(k, r(k)) = (L | L0 · · · Lp22 | L0,0 · · · ).

Eq. (1) reveals that the output signal x(n) is ob-
tained by a linear combination of shifted copies of
a set of so-called primary signals [3]. The number
of primary signals associated with a specific nonlin-
earity of order m is determined by the parameters
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Figure 1: The architecture of NLFSR implementa-
tion

{pml}, l = 2, · · · ,m, while the shifts involved in a
specific primary signal determined by the indices
i1, · · · , im−1 is indicated by Li1,··· ,im−1 . By con-
vention Li1,··· ,im−1 = 0 declares the absence of the
corresponding primary signal.

The regular representation can be directly and
canonically mapped onto an architecture where
three main structural modules are involved, as in-
dicated in Fig. 1. The primary signal development
module generates the primary signals. It takes as
inputs the delays of signal x(n) and requires the
use of multipliers for the generation of the primary
signals. The delay module includes a delay struc-
ture for each primary signal that spans all pertinent
signal products involved in eq. (1). The third mod-
ule includes the scalors associated with the coeffi-
cients ci, ci,i1 , · · · and the appropriate adders that
are combined to generate x(n).

Eq. (1) is nonlinear with respect to x(n) but
is linear with respect to the unknown coefficients
{ci,i1,··· ,im−1}. Collecting all signal samples x(n),
M < n ≤ N and setting c0 = −1, we write eq. (1)
in matrix form as

T1(u) · C = 0 (3)

where the (N−M)×Q matrix T1(u) and the Q×1
column vector C are defined as:

T1(u) = (XN−M
M−L XN−M

M−L+1 · · · XN−M
M XN−M

M−L0,0 · · · )

C = (cL cL−1 · · · c0 cL0,0 · · · )T

and

XR
P = (x(P + 1) x(P + 2) · · · x(P + R))T , (4)

XR
P,i1,··· ,im−1

=




x(P + 1) ·∏m−1
w=1 x(P + 1−∑w

j=1 ij)
x(P + 2) ·∏m−1

w=1 x(P + 2−∑w
j=1 ij)

...
x(P + R) ·∏m−1

w=1 x(P + R−∑w
j=1 ij)




where 2 ≤ m ≤ k and P ≥ 0 determines the first
entry. Clearly u controls the size of T1(u). Due to
the shift invariance of eq. (4) we have for any 0 ≤

K ≤ R, XR
P = (XK

P
T

x(P+K+1) · · · x(P+R))T ,
where XK

P provides the upper subblock of XR
P of

length K. Vector XR
P,i1,··· ,im−1

is partitioned in a
similar fashion.

It is useful to harmonize the column lengths by
arbitrarily extending T1(u) to

T (u) = (XN
M−L XN

M−L+1 · · · XN
M XN

M−L0,0 · · · )
where the signal values x(n) that fall outside the
given range 1 ≤ n ≤ N are arbitrarily assigned and
are referred to as ”don’t care” entries.

3 Total ordering of regular forms

Let V (u) be a real function V (u) : A → R that rep-
resents the implementation cost associated with the
architecture corresponding to u, where A includes
all u that satisfy problem requirements. V (u) is
termed the ordering function. Let

B(u) = (1
∑

i1

gs(Li1) · · ·
∑

i1

· · ·
∑

ik−1

gs(Li1,··· ,ik−1))
T

Q(u) = (L + 1
∑

i1

Li1 · · ·
∑

i1

· · ·
∑

ik−1

Li1,··· ,ik−1)
T

where gs(n) equals zero for n ≤ 0 and 1 other-
wise. If gs(Li1,··· ,im−1) = 0 the corresponding pri-
mary signal is absent. The i-th component of B(u)
provides the number of primary signals associated
with the order i. Similarly the entries of Q(u) de-
scribe the delays of the primary signals.

An ordering denoted by <V is defined as fol-
lows: Let u1 = (k1, r1(k1), S1(k1, r1(k1))), u2 =
(k2, r2(k2), S2(k2, r2(k2))) ∈ A. Then

u1 <V u2 if and only if one of the following holds:
(5)

1. V (u1) < V (u2)

2. V (u1) = V (u2) and k1 < k2

3. V (u1) = V (u2), k1 = k2 and B(u1) <T B(u2)

4. V (u1) = V (u2), k1 = k2, B(u1) = B(u2) and
r1(k1) <T r2(k2)

5. V (u1) = V (u2), k1 = k2, B(u1) = B(u2),
r1(k1) = r2(k2) and Q(u1) <T Q(u2)

6. V (u1) = V (u2), k1 = k2, B(u1) = B(u2),
r1(k1) = r2(k2), Q(u1) = Q(u2) and
S(k1, r1(k1)) <T S(k2, r2(k2))
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where the total degree ordering between two m× 1
vectors p and q is defined by :
(

p1 · · · pi · · · pm

)
<T

(
q1 · · · qi · · · qm

)

iff either
∑

1≤i≤m

pi <
∑

1≤i≤m

qi or


 ∑

1≤i≤m

pi =
∑

1≤i≤m

qi




∧(∃i) ((1 ≤ i ≤ m) ∧ (pi < qi, pi+1 = qi+1, · · · , pm = qm))

The ordering <V is a total ordering and is mainly
based on the cost function V (u). For equal cost
implementations the ordering <V is based on the
degree of nonlinearity. If equality sustains the or-
dering <V relies on the number of primary signals
or the number of delays. V (u) can be assessed by
summing the cost of scalors, adders, multipliers and
delay units and has the property that adding extra
feedback taps or inserting extra primary signals to
the register increases its cost.

The problem under consideration is formulated
as follows: Given a sequence {x(n)} of length N in
the field F , a set of constraints and a cost function
V , we search for u = (k, r(k), S(k, r(k))) ∈ A and
C 6= 0 such that T1(u) · C = 0, C is recursively
computable and for all u

′ ∈ A with u
′
<V u there

exists no recursively computable C
′ 6= 0 such that

T1(u
′
) · C ′

= 0.
A first approach in dealing with the problem is

exhaustive search. Indeed, by the use of eq. (5)
let us order the structural vectors as u1 <V u2 <V

· · · <V ui <V ui+1 <V · · · . Then exhaustive search
successively constructs T1(ui) and checks for recur-
sively computable C 6= 0 such that T1(ui) · C = 0.
This scheme involves an enormous number of cal-
culations since the procedure for linear dependence
is repeated for each T1(ui).

An alternative is the insertion of all T (uj), uj <V

ui in a matrix Tmax(ui) whose linear dependence
eventually reflects the linear dependence of the
minimal T1(ui). However, the resulting matrix con-
tains a lot of ”don’t care” elements and the issue
of linear dependence needs proper modification.

4 The proposed algorithm

The organization of the proposed algorithmic
scheme is illustrated in Fig. 2. It consists of the
preprocessing module and the main module. The
preprocessing module builds the total ordering of
the structural vectors contained in A. This module

does not depend on the given sequence and pro-
vides the framework for the main module. It can
be implemented in an off-line fashion.

The main module includes three submodules.
The first submodule builds column by column a
matrix Tmax that traces the ordering of structural
vectors. The second submodule identifies a linear
combiner (if any) of subcolumns of Tmax that forms
a candidate for a minimal solution. The third sub-
module checks if the linear combiner corresponds
to the minimal solution.

More specifically, the first submodule follows the
total ordering and updates the matrix Tmax(ui) by
adding the column XN

Ii
(if any) of T (ui) not in-

cluded in Tmax(ui−1). By definition of total or-
dering and the architecture based on primary sig-
nals, it is obvious that every matrix T (ui), i > 1
contains at most one column not contained in any
T (uw), w < i. This column may correspond ei-
ther to a new primary signal not contained in any
T (uw), w < i or to the next shift of an existing pri-
mary signal. Thus all except possibly one column
are contained in a preceding matrix Tmax(ui−1).
Then the addresses of all columns of T (ui) included
in Tmax(ui) are determined. This task is performed
by the column addressing box of Fig. 2.

The second submodule estimates the discrepancy
detector fs and the maximum length ls of the up-
per subblock of column XN

Ii
that is linearly depen-

dent on the corresponding subblocks of the previous
columns of Tmax(ui), under the constraint that if a
previous subblock contains a ”don’t care” entry, the
corresponding tap is zero. The discrepancy detec-
tor of a column checks if the maximum linear com-
biner is applicable to the next row. This requires
that all ”don’t care” entries in this row correspond
to zero coefficients of the linear combiner. The dis-
crepancy detector takes the value −1 (if combiner
is not applicable) and 1. If all columns of T (ui)
are included in Tmax(ui−1), their characteristics fs

and ls have already been determined in a previ-
ous step. Estimation of ls and fs is realized via a
modified version of FIA [2] (EFIA) taking into con-
sideration that the ”don’t care” entries are located
successively at the bottom end of the columns.

The features ls and fs critically affect subsequent
algorithmic steps. If for XN

Ii
holds that fs = 1 and

ls < Ni, then the algorithm proceeds to the first
submodule. (XNi

Ii
denotes the upper subblock of

XN
Ii

that belongs to T1(ui)). Otherwise the third
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Figure 2: The structure of the proposed algorithm

submodule checks if the obtained maximum linear
combiner corresponds to the desired minimal so-
lution. If this is not the case the algorithm pro-
ceeds to the first submodule. If that is the case
then ui is the minimal solution, since as the algo-
rithm proceeds sequentially according to the total
ordering, at step i all solutions u <V ui have been
rejected. Scaling and shifting leads to the minimal
cost NLFSR.

Complexity analysis
The exhaustive search involves the application

of the linear dependence test on a set of matrices
(matrix by matrix), while the proposed algorithm
mainly involves the application of the linear depen-
dence test on a single matrix (column by column)
until the minimal NLFSR is reached. Suppose that
ub is the structural vector of the minimal system
generating the terms of the given sequence. Then,
the proposed algorithm applies the linear depen-
dence test on a N × q matrix, q ≤ b + 1 columns.
If the exhaustive search is applied the solution is
obtained through the application of FIA on b ma-
trices of size N × qi, i = 1, · · · , b. The reduction is
obvious since

∑b
i=1 qi > q.

Example
Consider the finite field GF (24) generated by

p(x) = 1+x+x4, a primitive element a and the se-
quence a7, a5 ,0, a10, a7, a4, a3. Application of the
algorithm for structural vectors u ∈ A with k ≤ 4,
L ≤ 10 and Li1,··· ,im−1 ≤ 10, 2 ≤ m ≤ 4, provides
the following minimal NLFSR

x(n) = a2 (x(n− 1))2 + a5x(n− 2), n > 2

which indeed generates the given sequence. The
same sequence is generated by the linear equation

x(n) = a10x(n−1)+ax(n−2)+a7x(n−3)+a9x(n−4),

n ≥ 5. This linear register would be obtained by
the algorithm if the latter was allowed to continue
further.

5 Conclusions

The proposed algorithm can be viewed as extension
of the Berlekamp-Massey algorithm [1] and the FIA
scheme [2]. The updates are based on a discrepancy
detection mechanism but the search is carried over
a multidimensional set ordered by the total degree
order plus a cost function reflecting the implemen-
tation cost. Although the proposed algorithm is
designed to produce the minimal architecture, it
can also be employed to determine alternate archi-
tectures that generate the given sequence. Further-
more the proposed algorithm applies to sequences
in arbitrary fields.
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