
A RNN-LC Hybrid Equalizer

Magno T. Madeira da Silva and Max Gerken
Department of Telecommunications and Control Engineering
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ABSTRACT

A hybrid equalizer using a linear combiner and a re-
current neural network is presented. It characterizes
itself for being adaptive and presenting: 1) a worst case
performance very close to the best of the substructures
that composes it, being better that each one of them in
critical situations; 2) a computational complexity that
makes its implementation feasible; and, 3) a good per-
formance in difficult environments as, for example, chan-
nels with non-minimum phase, spectral nulls or non-
linearities. Adaptation of coefficients is done using both
the LMS and RTRL algorithms. Simulations illustrate
the good performance of the proposed equalizer.

1 Introduction

Equalization of communication channels can be inter-
preted as a non-linear classification problem that de-
mands adaptive solutions. This fact motivates the use
of non-linear structures such as neural networks [1]. In
many situations, they may present a better performance
in comparison with conventional equalizers as Linear
Transversal Equalizers (LTE) and Decision-Feedback
Equalizers (DFE) which, having a lower computational
complexity, present a sub-optimal performance.
Optimal equalizers based on the Bayes criterion or on
the Maximum Likelihood criterion (for example the
Viterbi algorithm) have high computational complexity,
a limitation that is shared by equalizers based on neural
networks like MLP (Multilayer Perceptrons), RBF (Ra-
dial Basis Function) or SOFM (Self-Organized Maps).
Usually, these networks have high complexity and de-
mand long training times.
Thus, a simple approach is to use less complex non-
linear structures to improve the performance of conven-
tional equalizers. Obviously, it’s desirable to get struc-
tures which are feasible to implement.
With this in mind many authors have considered hy-
brid equalizers based on linear structures (LTE) and
neural networks [1, 6]. Variations of these structures
have also appeared using decision feedback. In [6] some
hybrid structures were presented which basically con-
sist of the LTE in series with a RBF or MLP network.
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Although these equalizers present a good performance
for non-linear channels, they have high computational
complexities due to the use of RBF or MLP networks.
In [4, 5] a Recurrent Neural Network (RNN) was pro-
posed for equalization purposes. This network has low
complexity and can be trained using the Real Time Re-
current Learning (RTRL) algorithm which updates the
weights of the network in real time [5]. Comparing this
equalizer with the LTE/DFE, it was observed in several
situations that when one presents a poor performance,
the other presents a good one. This behavior suggests
combining these structures in order to obtain the best
of both.
In this paper a hybrid equalizer formed by a DFE and
a RNN is proposed. It is described in the next section.
Thereafter, some simulation results are presented. A
conclusion section closes the paper.

2 The Proposed RNN-LC Hybrid Equalizer

The proposed hybrid equalizer (Fig. 1) is formed by a
RNN and a linear combiner (LC) connected with two de-
lay lines constituting the DFE substructure. The input
of this substructure is given by Mf delayed samples of
the input signal u(n) and by Mb delayed samples of the
RNN output. The inputs of the RNN substructure are
given by the same samples of the input signal u(n) and
by Mr past decisions that are fed back. In Fig. 1 a(n)
and â(n) represent respectively the transmitted symbols
and their estimates.
Figure 2 shows the RNN substructure with N = 3 fully
interconnected neurons and M external inputs. In this
case the external inputs xi(n), 0 ≤ i < M , are given by
Mf delayed samples of the input signal u(n) and by Mr

past decisions that are fed back. The output of a neuron
at time n + 1 depends not only on the external inputs
xi(n), 0 ≤ i < M , but also on the previous outputs
of all the neurons (yk(n), 1 ≤ k ≤ N). In Fig. 2 the
existing delays at the connections between neurons and
the sigmoidal non-linearity at each neuron output are
omitted. More detailed descriptions of each one of these
substructures can be found in [4] and [3].
On-line training of the considered hybrid equalizer can
be performed using the RTRL algorithm [4], [5] for the
RNN parameters and the LMS algorithm [2] for the LC
weights. The problem that appears is how to obtain
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Figure 1: Scheme of RNN-LC hybrid equalizer.
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Figure 2: RNN with N = 3, M inputs and output y3.

the error at the RNN output, or in other words, how
to propagate the error from the output of the LC to
its inputs. Fortunately, due to the linear nature of the
LC this problem has a very simple solution. Assuming
that there is an error eRNN(n) at the output of the RNN,
Fig. 3 shows how this error propagates to the output of
the LC. Thus, the error e(n) at the LC’s output is given
by

e(n) =
∑Mf +Mb−1

k=Mf

wk(n)eRNN(n − k + Mf ),

where wk, k = Mf ,Mf +1, · · · ,Mf +Mb−1, are the LC
weights associated to the input coming from the RNN,
Mf is the number of inputs that constitute the channel
output and Mb is the number of inputs that correspond
to the RNN output. From the previous equation, the
RNN error can be calculated as

eRNN(n) =
e(n) −

∑Mf +Mb−1

k=Mf +1
wk(n)eRNN(n − k + Mf )

wMf
(n)

.

From this expression one readily concludes that
wMf

(n) 6= 0 must be satisfied. To guarantee this con-

dition initially wMf
(n) = 1 was imposed. Moreover,

several simulations have shown that a further simplifi-
cation, taking eRNN(n) = e(n), does not introduce signif-
icant performance deterioration as long as the extreme
values of the sigmoidal non-linearities are compatible
with the signals levels. Therefore, the computational
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Figure 3: Error propagation for RNN adaptation.

complexity of the training algorithm is the addition of
the computational complexities of the algorithms used
for training each substructure under consideration: the
RTRL algorithm for training the RNN and the LMS al-
gorithm for training the LC. Table 1 shows the computa-
tional complexity of the RTRL and LMS algorithms for
real signals. In this table, NL represents the non-linear
operation of the sigmoidal functions. For complex sig-
nals appropriate versions of the RTRL [5] and the LMS
[2] should be used.
To allow real time operation the training algorithm must
present fast convergence. Simulations show that for
most applications it is convenient to adjust the learn-
ing rates of both algorithms, RTRL and LMS, approxi-
mately equal, at least at the same order of magnitude.
However, in some cases it was convenient to increase
the learning rate of the RTRL to be about 10 times the
learning rate of the LMS.

Op. RTRL LMS
× (Mf + Mr)[N

2(N + 1) + 2]+ 2(Mf + Mb)+
+(N + 1)(N3 + 1) + 2N2 +1

NL 2N -
+ (Mf + Mr)N(N2 − N − 3)+ 2(Mf + Mb)

+(1 − N)(1 − N3) + 3N2

Table 1: Computational Complexity of the RTRL and
LMS algorithms for real signals.

3 Simulations Results

The channel models used in the simulations are shown
in Table 2. Coefficients h0(n), h1(n) and h2(n) of chan-
nel H5 are generated by passing a Gaussian white noise
through a second order Butterworth filter designed to
simulate a fade rate of 0.1 Hz [8]. The coefficients of the
digital radio channels can be obtained from [7].
The performance of the hybrid equalizer has been in-
vestigated by measuring symbol error rates (SER) for
2-PAM and 4-QAM modulations. For the sake of com-
parison, DFE and RNN equalizers were also considered.
The used configurations and the corresponding com-
putational complexities of the training algorithms (for
real signals) are shown in Table 3. Considering compu-
tational complexities of training algorithms, this table
shows that the hybrid equalizer lies between the RNN
equalizer with 2 and 3 neurons.
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H1 (Digital radio channel)
FIR model with 300 real coefficients from [7]
H2 (H1 with non-linearities)
vl(n) = H1(z)a(n)
v(n) = vl(n) + 0.1v2

l (n) + 0.05v3

l (n)
H3 (Time-variant [8])
v(n) = a(n) + sen(2πn/T )a(n − 1), T = 3000
H4 (H3 with non-linearities)
vl(n) = a(n) + sen(2πn/T )a(n − 1)
v(n) = vl(n) + 0.2v2

l (n) − 0.1v3

l (n)
H5 (Time-variant [8])
v(n) = h0(n)a(n) + h1(n)a(n − 1) + h2(n)a(n − 2)
H1c (Digital radio channel)
FIR model with 300 complex coefficients from [7]
H2c (H1c with non-linearities)
vl(n) = H1c(z)a(n)
v(n) = vl(n) + 0.05v2

l (n) + 0.01v3

l (n)
Notation: z−1a(n) = a(n − 1)
a(n): channel input symbols
v(n): noiseless channel output

Table 2: Communication channel models used in the
simulations.

The considered delays of the training sequences were
τd = 50 samples for the time-invariant channels (H1,
H2, H1c, H2c), and τd = 3 samples for the time-variant
channels (H3, H4, H5).

Equalizer N Mf Mb Mr × + NL
RNN2 2 5 - - 105 14 4
RNN3 3 5 - - 320 94 6
DFE - 5 4 - 19 18 0
HIB 2 5 4 3 166 28 4

Table 3: Used configurations and number of operations
of the training algorithms for real signals.

Linear time-invariant channels have been used in figures
4 and 5. They show that in the worst case the hybrid
equalizer presents a performance close to the best sub-
structure (DFE) considered alone. In cases where the
RNN equalizer has a better performance, the hybrid
equalizer presents a performance close to it. Fig. 4-b
and 5-b show that, in the case of non-linear channels,
the hybrid equalizer outperforms the DFE and the RNN
equalizer. Thus, its performance is not limited to the
performance of their substructures.
In Fig. 6-a a linear time-variant channel is consid-
ered. The three equalizers present close performances
for signal-to-noise ratios (SNR) below 15 dB. In this
range the DFE performs slightly better than the hybrid
equalizer, indicating that the RNN substructure has not
properly converged. On the other hand, for SNR’s above
15 dB, the hybrid equalizer presents the best perfor-
mance. With the introduction of non-linearities (chan-
nel H4, Fig. 6-b) the hybrid equalizer outperforms the
other two in the whole SNR range. Below SNR=15dB
the behaviors are similar but above this value the hybrid
equalizer shows its superiority.

Fig. 7 shows errors at the output of the decisors by con-
sidering the linear and time-variant channel H5. The
considered signal-to-noise ratio is 20 dB. The absolute
values of the roots of h0(n)x2+h1(n)x+h2(n) are shown
in Fig. 7-d so that burst of errors can be associated with
rapid changes of these roots. Particularly, the bursts
near iterations 5000 and 27000 are due to strong spectral
nulls. In these situations, shown in Fig. 7, the hybrid
equalizer presents a faster recuperation.
Finally, it is worth noting that increasing the number
of coefficients of the DFE does not result in significant
improvements, at least for the examples under consid-
eration. Therefore, a comparison with more complex
DFEs has been omitted.

4 Conclusions

The proposed hybrid equalizer has reasonable computa-
tional complexity and presents good performance for dif-
ficult communication channels as, for example, channels
with non-minimum phase, spectral nulls, non-linearities
or a combination of these situations. By means of sim-
ulations it has been shown that the proposed equalizer
outperforms Decision Feedback Equalizers and Equaliz-
ers based on Recurrent Neural Networks of similar com-
putational complexities. More specifically, considering
computational complexities of training algorithms, the
hybrid equalizer lies between the RNN equalizers with
2 and 3 neurons.
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Figure 4: Plot of decimal logarithm of the SER consid-
ering τd = 50, 2-PAM, equalizers configurations shown
in Table 3 and channels a)H1 and b)H2.
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Figure 5: Plot of logarithm of the SER considering τd =
50, 4-QAM, equalizers configurations shown in Table 3
and channels a)H1c and b)H2c.
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Figure 6: Plot of logarithm of the SER considering τd =
3, 2-QAM, equalizers configurations shown in Table 3
and channels a)H3 e b)H4.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2

a
)D

F
E

(5
,4

)

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2

b
)R

N
N

(2
)

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2

c
)H

Y
B

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

5

10

iterations

d
)

Figure 7: a), b) e c) Output errors considering the equal-
izers of Table 3 and channel H5 d) Absolute root values
of the polynomial h0(n)x2 +h1(n)x+h2(n) correspond-
ing to channel H5.
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