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ABSTRACT

This paper presents a new version of the exact dis-
crete Radon [1] transform denoted as Mojette trans-
form. Whereas the Mojette transform backprojects a
single bin into a grey value pixel at each iteration, the
proposed version backprojects a bin onto an entire seg-
ment of binary pixels. Implementation of this discrete
exact backprojector is presented and used for specific
binary images of incomplete contours giving a new rep-
resentation of 2D edges images.

1 INTRODUCTION

Incomplete contours coding is still an open area. Much
of the classical methods for contours (Freeman, RLE,
Fourier descriptors) need complete contours to be effi-
cient. In other words, the goal of this paper is to develop
a new transform able to reduce the entropy of the 2D
source. This is elegantly done here using a discrete pro-
jection method. The binary image is projected onto 1D
integers bins. Thanks to an a priori knowledge of an un-
balanced binary density function, only few projections
suffice to reconstruct the entire data set, therefore the
method compresses the initial data. Section 2 recalls the
main principles of the Mojette transform and section 3
presents both the discrete backprojector algorithm and
its complexity properties. Section 4 discusses the choice
of the projections set and give a second algorithm for
choosing the minimum set. Finally section 5 exempli-
fies the approach onto both real contours images and for
bitstreams mapped onto a 2D geometrical buffer.

2 THE MOJETTE TRANSFORM

The Mojette transform has been described and used for
the last five years [2]. It corresponds to a linear discrete
exact Radon transform, i.e. a set of discrete projections
describing a discrete image, a convex region or a volume.
Projection angles are chosen among discrete directions
0 = atan(p,q) where p and q are integers prime together
(GCD(p,q) =1). Thus the equation of the transform is
given in 2D by :
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with

Mif(k,)) =Y > f(k,DA(m —pik +qil),  (2)
k l

and where A(m) is the discrete Kronecker function. The
transform is thus linear both in the number of projec-
tions I and the number of pixels denoted by N. The
number of points, denoted as bins in the following, onto
a projection of direction (p,q) depends upon the shape
of the support. This linear transform generates redun-
dancy usually computed with the following red index
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Figure 1: Exemple of a projection set of a binary shape

2.1 Algorithms

The direct and inverse transform algorithms are now
presented. They both have a complexity order of
O(IN).

2.1.1 Direct Algorithm

for indexproj <+ 1 to I
for indexpixel < 1 to N
b < p.lig-q.col
bin(p,q,b) < +image(lig,col)
endfor
endfor



2.1.2 Inverse Algorithm

The inverse transformation can be implemented with an
algorithm that has the same complexity than the direct
transform, i.e. O(IN) with only (integer or modulo)
additions/subtractions operators instead of finding an
inverse matrix formulation.
for indexpixel <1 to N

(n,b) + Stepl

(1ig,col) « Step2(n,b)

image(lig,col) < bin(p,q,b)

for indexprojection< 1 to I

update corresponding bin

endfor

endfor

Step 1 List of one-to-one correspondence between bins
and pixels

Step 2 Linking information between bins and pixels
allows to easily retrieve pixel coordinates

3 THE BACKPROJECTION OPERATOR

The classical Mojette transform as described above ap-
plies to convex shapes. In this section a new version
of this transform is presented. This new version has
been designed to allow projection data description when
non-convex shapes are taken into account. Another way
to start with is considering supports with an a priori
knowledge different than the usual support convexity.
This new version of the Mojette transform backpro-
jects a segment instead of a single bin at each itera-
tion. The inverse operator corresponding algorithms are
based on the a priori information of the image to be re-
constructed. The projection algorithm remains almost
the same as classical Mojette transform algorithm.

3.1 Projection

The image composed of a few non-zero pixels is first pro-
jected using a set of (p,q) angles. On each projection,
the bins values represents the number of non-zero pixels
on the projection line.
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Figure 2: Exemple of projection of a binary shape

In the following example, a 64x64 Lena edges image
shown in figure 3 has been projected according to the
projectionset: S = {(10);(01);(11);(1—-1);(207);(15
4)}. The number of zero value pixels is 2828 (for 4096

pixels). The total number of bin is 3282 where 1219 bins
were zero valued.

Figure 3: Binary 64 x 64 image of Lena

3.2 Exact backprojection
3.2.1 Regular algorithm

The basic principles of the backprojection algorithm are
the following : first n-to-one matches between pixels and
bins have to be found, then the bins are backprojected
and finally the projections set is updated.

If a bin is zero-valued, then all the pixels (carried by a
discrete projection line) matching with this bin are also
zero-valued. In the case where the bin value is n # 0, n
is compared to the amount of pixels on the projection
line not yet recontructed. If these two values match,
then the bin can be backprojected.
for indexbin < 1 to B

if bin.binary = 0 or n

{(n,b)} « Stepl
{(1ig,col)} « Step2{(n,b)}
binary(lig,col) < bin(p,q,b)
for indexprojection< 1 to I

update corresponding bin
endfor

endif
endfor

Step 1 List of n-to-one correspondences between bins
and pixels belonging to the projection line and de-
noted by {(n,b)}.

Step 2 Linking information between bins and pixels
allows to easily retrieve pixel coordinates

3.2.2  Optimized algorithm

This binary reconstruction can be split into two parts.
First ”obvious” zero-value pixels are reconstructed. If
a bin has a zero value, this means that no pixel with a
non-zero value was found on this projection line. Ac-
cordingly, all the pixels belonging to this projection line
are set to zero. When projections are judiciously chosen,
there is a high ratio of zero value bins on this projections.
Indeed this first part is quickly computed as there is no
updates on the projections to be done (backprojecting
zeros does not modify bins values).

In the second part, the aim is to mark the pixels be-
longing to the shape with value one. This part is pro-
cessed using the algorithm presented above.



3.3 Grey level reconstruction

When the previous binary reconstruction allows to re-
construct the binary shape, a second step aiming at re-
trieving the grey levels values belonging to the shape
can start. This final step is actually a classical inverse
Mojette operator. A one-to-one relationship between
pixel and bin is first searched for, then the matching
pixel gets the bin value, finally projections are updated.
This process is iterated, until complete reconstruction is
achieved.

Notice that each step is still of complexity order
O(IN), i.e. the overall complexity is O(2IN + ¢) where
€ is the cost of the first step (obvious zero values recon-
struction). Each step of the global algorithm is subject
to failure. This means that even if if a projection set
managed to reconstruct the binary, the grey levels val-
ues may not be retrieved by the same set.

4 CHOICE OF THE PROJECTIONS SETS

When using the classical Mojette transform, Katz’s cri-
terion [4] has to be respected to ensure reconstruction.
Let I be a P x () image and S = {(pi, ¢;)} a set of pro-
jection, the reconstruction is possible if . |p;| > P or
> lail > Q. Thanks to our a priori knowledge on the
images or volumes, Katz’s rule can be passed over for
the discrete backprojection operator.

In this section we will discuss the choice of the pro-
jection set in the case of exact backprojection operator.

4.1 Conjecture

In this paragraph we will introduce a conjecture that
allows to decide if a set of projection is sufficient to
complete the reconstruction on the shape.

First, consider that S allows for the reconstruction of
I. Now let S; be a sub set of S, S; =S5\ (p; ¢;) and G
be the ghost [3] generated by dilatations of the 2PSE *.
Conjecture

If G or a linear combination of G can be mapped

on the erosion of I by (p;,q;) without modifying the

image values, then (p;, ;) is not necessary for recon-

struction using the line backprojection operator.
Knowing that the image dynamic must be respected, co-
efficients for the linear combination of G can only be in
{-1,0,1}. Moreover ” — 1” (resp. 1) value of the ghost
must match with ”0” (resp. 1) pixel value.

We will use the exemple of fig. 4. The binary shape
to reconstruct is 4x4 large. Thanks to Katz’s crite-
rion, S = {(1 1)(1 0)(2 1)} is ensured to reconstruct
the shape. Let’s try to determine if S; = .5\ (2 1) also
allows the reconstruction.

The above figure represents two different shapes and
the ghost that have to be mapped on the shapes.

In the first case (shape 1) the ghost cannot be mapped
onto the image. Then angle (2 1) is not necessary for
reconstruction and S7 is sufficient.

12PSE stands for Two Pixel Structuring Elements
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Original shape 1 Ghost generated by $ Original shape 2

Figure 4: Two different shapes and a ghost

In the second case, the original image has been
changed so that the ghost can be mapped on it. Here,
the image cannot be reconstructed with S;. Thus pro-
jection (2 1) is necessary for reconstruction.
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Erosion of I by {(0;(2,1))}

The ghost cannot be mapped
on shape 1

The ghost is mappe
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Figure 5: Mapped ghosts an the eroded shape

The two previous cases are quite simple. Nonetheless,
the difficult practical point is to find the right linear
combination for the ghost. For bigger shape, the number
of different combination exponentially increases with the
number of pixels of the ghost and image. Then, we
next suggest another way to determine the projection
set using an n-ary tree.

4.2 N-ary tree

The root of this tree will be a set fulfilling Katz’s crite-
rion. Let this set contains N different projections. Each
level of the tree will be constituted of subsets of the
root set. Then we recursively try to reconstruct the bi-
nary support using the different subsets generated by
the n-ary. When the reconstruction failed, the sub-tree
does not need to be pruned further. Finally we get all
the smallest sub-sets allowing the reconstruction of the
binary support. The best choice is then computed by
choosing the set with the minimal bin number.

Next is an example of tree construction. Let I be a
small 8 x 8 image. The base set of projection (the root
node of the tree) is Sop = {(4 1),(2 1),(1 1),(1 0)}. In
this example, the root node allows the reconstruction of
the image I. The first three sub-sets of the first level of
the tree also allows for reconstruction, whereas the forth
one ({(21);(11);(10)}) does not. Concerning the sec-
ond level, none of the sub-sets allows for the recovery of
the original support. Finally, the first three sub-sets of
level 2 are the smallest sub-sets possible for reconstruc-
tion. The one with the smallest amount of bins should
be preferred as it is also the smallest in terms of data

storage ({(4 1)(1 1)(1 0)}).



S0=(4 1)(2 1)(1 1)(1 0)

(2110

[@neDay| [@nedao] [@nanao]
\ \ !

41 41 (21 41 41 (21 41 @41 @11
21 11 (10 21) (100 (10 (11 (100 (10

Figure 6: Example of an n-ary tree construction.

5 APPLICATION

The most natural application in image analysis for this
new operator is the description and reconstruction of
sparse images.

In figure 3.1 the 64x64 Lena image is a binarized
edges images. In the following example the same image
is valuated. Then the image is projected according to a
set S = {(10);(01);(11);(1-1);(207);(154)}. Ac-
cording to Katz’s criterion this set could not reconstruct
the image using the classical Mojette transform. When
using the new operator the set S allows to reconstruct
the image. In the next figure, we show the original grey
levels image, and the results the exact backprojection
algorithm, figure 5.b) show the result for the first part
of the optimized algorithm, we can notice that a lot of
zero value pixel are quickly reconstructed after this first
part. Figure 5.¢) and d) show the reconstructed binary
and grey levels image.
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Figure 7: Example of backprojection with Lena image

This new version of Mojette transform can also be ap-

plied on binary image generated from bitstream. Let B
be a bitstream containing 16384 (16Ko). This bitstream
can be mapped onto a 128 x128 binary image. Let con-
sider that the a priori knowledge is a very unbalanced
probabilities about the distribution of ”1” and ”0” pix-
els. In our example, it contains 10% ”1” pixels and 90%
”(0” pixels.

Figure 8: A bitstream mapped on a 128x128 buffer

This bitstream can be reconstructed with the set S =
{(11);(116);(132);(112)}, which represents only 8256
bins, i.e. red = —0.496.

6 CONCLUSION

In this paper, a new way of representing binary images
using a specific implementation of the Mojette trans-
form was presented. The goal was to represent and ex-
actly reconstruct 2D edges of an original binary or grey
levels pixel set. An original algorithm of an exact back-
projetor was presented, which is linear both in pixel and
projection number. The projection is image-content-
dependent and suppose high number of zero value pixels.
An algorithm for choosing the minimum set of projec-
tion was also presented. Examples to real edges images
and to bitstream mapped onto geometrical buffer were
given. RLE encoding of the projections can be a second
stage of compression for the proposed method.
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