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ABSTRACT 

 
Wiener filtering is used to reduce the quantization error 
of the DCT transform coefficients. The process is 
applied in the transform domain with a sub-band 
decomposition structure. That is, the corresponding 
coefficients from each block are grouped together. To 
model the spectrum of the transform coefficients, two 
approaches are taken. The first one is to directly estimate 
the spectrum of the whole sequence. The second one is to 
remove the dependence among the sequence and model 
the mean-removed sequence as white noise. With the 
estimated spectrum, Wiener filter is then used to extract 
the original coefficients from the quantized ones. 
 

1. INTRODUCTION 
 
With block transform coding, although the transform 
operation (analysis filter bank and synthesis filter bank) 
is a perfect-reconstruction (PR) pair, the signal loss is 
inevitable due to the quantization operation. The results 
of the quantization are the blocking effect due to coarse 
quantization of the DC coefficient and the ringing noise, 
called as the Gibbs phenomenon, due to the coarse 
quantization of the high frequency subbands. To reduce 
these effects, one possible solution is redesign of the  
synthesis filter bank to incorporate the quantizer models 
to the inverse transform [2] [8] [9]. Other researchers 
have incorporated the quantization model in the design of 
filter banks by minimizing the mean square 
reconstruction error [3] [6]. The resultant filter bank 
minimizing the overall reconstruction error is also a PR 
filter bank for Lloyd-Max quantizers. There are also 
spatial and transform domain post-processing approaches 
which removes the artifacts of block-transform coded 
images caused by quantization or channel degradation [7] 
[8]. In this paper, a post processing is proposed. To 
remove the quantization noise, Wiener filter is used to 
process the quantized coefficients . For this, two methods 
are used to estimate the spectrum of the original un-
quantized signal. The first one estimates the spectrum of 

the whole subband sequence. The second method 
removes the dependence among the transform 
coefficients and models the resultant coefficients as 
white noise. In this approach, the signal spectrum is made 
a white noise. The second method leads to an adaptive 
Wiener filter due to the need to adaptively remove the 
mean for each coefficient. These two filters are applied 
to different subbands by using the corresponding 
quantization step size as a parameter for estimating the  
corresponding quantization noise power. 
 

2. QUANTIZATION PROCESS 
 
To describe the quantization effect, let us denote 

( )21,nnf and ( )21,nng as the subband signals before and 

after quantization, respectively. Then, the uniform scalar 
quantization process is modeled as 

        ( ) ( ) ( )212121 ,,, nnvnnfnng +=                        (1) 

where ( )21,nnv  is the additive random noise with 
uniform PDF. That is 
            ( ) ( )2,2~, 21 ∆∆−Unnv                                  (2) 

with ∆ being the step size and ( )⋅U  representing the 

uniform PDF.  
 

3. WIENER FILTERING 
 

  In this paper we apply the Wiener filtering on each of 
the quantized subband image and investigate the effect of 
quantization noise reduction. The purpose of the Wiener 
filtering is to reduce the blurring effect and to increase 
the signal-to-noise ratio. The basic requirement when 
using Wiener filter is to estimate the spectrum of the 
desired signal. This is the spectrum of the sequence of 
the corresponding coefficients from all the blocks. In the 
above, we have mentioned two methods. With the first 
method, the whole sequence is processed in one time. In 
this case, the spectrum of the whole sequence is used in 
the processing. In the second method, we reduce the 
processing length of the sequence. In the extreme, the 



length can be just one point. To process the signal one 
point at a time, we de-correlate the signal by subtracting 
the local mean from each point. For the first method, the 
processing length is chosen to be the same as the window 
length that is used to calculate the local mean. This length 
is much shorter than the whole sequence length. In this 
case, the length of the DFT is N by N, with N =3 or 5. The 
power spectrum is obtained as the absolute of the square 
of the DFT. The filter is  

( , ) ( ( , ) ) / ( , )s q sH u v P u v N P u v= −             (3) 

The processing result is then  
 

( , ) { * }pP m n IDFT Y H=                             (4) 

where pY  is the DFT of the quantized sequence, with 

    2 2( , ) | ( , ) | /s pP u v Y u v N=                                 (5) 

 
For the second method [1], it is a little bit more 
complicated. We have to de-correlate the signal such that 
we can process them point by point. In the following, we 
describe the process that we use to de-correlate the 
signals. Let us denote the additive noise as ( )21, nnv  and 

its variance as 2
vσ . For each point in the sequence 

( )21,nnf , we can model it as  

   ( ) ( )2121 ,, nnwmnnf ff σ+=          (6) 

where fm  and fσ  are the mean and standard deviation 

that are used to describe the point ( )21,nnf , and 

( )21 ,nnw  is a zero-mean white noise with unit variance. 
The point here is that after the mean is removed from the 
point ( )21,nnf , the resultant signal is just a white noise. 

This is what we mean by de-correlation. In this situation, 
the sequence can be segmented into points and the 
filtering can be applied point by point. Under this 
condition, the Wiener filter ( )21 , wwH  is given by 

 ( ) ( )
( ) ( ) 22

2

2121

21
21

,,

,
,

vf

f

vf

f

wwPwwP

wwP
wwH

σσ

σ

+
=

+
=     (7) 

From (7), ( )21 ,nnh  can be easily derived as a scaled 

impulse response.  
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This Wiener filtering becomes a point process. All the 
mean-removed coefficients are processed by a point-
mapping transform. The mapping value is a function of 
the variance. After the mapping, the mean value is added 
back to generate the desired output. Therefore, the mean 
value is unchanged during the process. Only the variance 
is modified. With the subtraction of the mean and 

modification of the variance and the final add back of the 
mean grouped together, we derive the following equation, 
where ( )21 ,nnp  is the final output. 
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              ( ) ( )( )2121 ,, nnmnng f−                                     (9)   

with fm  and 2
fσ  updated at each pixel. Note that  fm  is 

identical to gm  when vm  is zero, since only gm is 

available. For the determination of the mean, we use a 
local approach. That is a set of neighboring points is used 
to estimate the mean. We can estimate ( )21,nnm f  in (9) 

from ( )21 ,nng  by 
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where ( )212 +M  is the number of pixels in the local 
region used in the estimation. Within the local region, 

( )21
2 ,nnfσ  can be assumed to be space-invariant. 

Substituting ( )21 ,ˆ nnm f  in (10) for ( )21 ,nnm f  in (9) 

leads to 
( ) ( ) ( )212121 ,,, nnhnngnnp ∗=                (11) 

where 
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This is a time variant filter ( )21,nnh , because the 

variance is time variant. Since 2222 , fvfg σσσσ +=  may 

be estimated from ( )21 ,nng  by 
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The local mean estimate ( )21 ,ˆ nnm f  can be obtained 

from (10), and 
2
vσ  is assumed known. 

 
4. SIMULATION RESULTS 

 
In the first experiment, three images “Lena”, “Baboon” 
and “pepper” are used. In the simulation, the 88 ×  DCT 
transform is used as the subband transform of the image 
coder because of its popularity. After DCT transform of 
the original image, the coefficients of the same index 
from each block are grouped to form 64 subband images. 
Each subband image is then uniform quantized using the 
quantization table given in the JPEG standard. The 
coefficients in each subband image are quantized with the 
same step size since they correspond to the same entry of 
the quantization table. The results are shown in Table 
1,2,3. The ideal spectrum is the spectrum of the un-
quantized coefficient. The estimated spectrum is the 
spectrum of the quantized coefficients. The result 
indicates that processing with the ideal spectrum is better 
than that with the estimated spectrum. Also, in both case, 
the result depends on the size of the window that is used 
to derive the local mean. In the average, 5 by 5 is a 
reasonable choice. For cases are studied corresponding 
to 4 different quantization scale factors. With the 
estimated spectrum, the improvement is about 0.2. But 
with ideal spectrum the improvement is about 0.6. This 
indicate that there is much improvement to be gained if 
we can have better way to estimate the spectrum. In the 
second experiment, the "Lenna" image is used as the test 
image. Here, the quantization scale factor is a parameter 
for quantization and is chosen to be unity. To test the 
effectiveness of noise reduction by this method on each 
subband, the changes of mean square errors of each 
subband coefficients are computed for uniform scalar 
quantizers, with support sizes 33×  and 55× . The results 
are presented in Table 4. Note that the 64 subbands are 
listed in the zig-zag order in these tables. To see the 
contribution of the quantization noise reduction in the 
reconstructed image, the reconstructed PSNR of the 
reconstructed image versus the number of processed 
subbands (count on zig-zag order) are also computed. The 
result is presented in Fig. 1.  From Table 4, we know that 
the quantization errors in the lower subbands are 
effectively reduced for the uniform quantization case. 
The processsing gain is very low in the high frequency 
subbands for uniform scalar quantization. From Fig. 1, we 
know that the reconstructed PSNR’s are improved from 
35.78dB to 36.41 dB and 36.16dB for the 33×  and 

55× cases, respectively. For these two methods, the 
result with the second method is better than that with the 

first method. This is a topic that is still under 
investigation. 
 

5. CONCLUSION 
 

From the simulations, two things can be derived. The 
first is the effect of the spectrum. The case with long 
spectrum is that the result with ideal spectrum is better 
than that with estimated spectrum. But, more important 
thing is that the processing length is of consequence. The 
case with one point is better than that with the long 
spectrum. These are the two major factors that are 
investigated in this paper about Wiener filter. In all the 
cases, we do find out that adaptive Wiener filtering 
technique can effectively reduce the quantization error. 
This effect is more apparent for the first few subbands in 
subband image coder. There are still something that is to 
be investigated about the fact that this technique is not 
very effective in the higher band. For the higher band, 
since the coefficient is often quantized to zero, the 
varriance of the quantization error is equal to that of the  
coefficient, which is usually low compared to the lower 
band. Therefore, for a DCT image coder adopting uniform 
scalar quantizers, the use of adaptive Wiener filter in the 
quantized subbands can effectivelly reduce the 
quantization noise and increase the overall reconstruction 
performance. 
 

6. REFERENCES 
 
[1] J. S. Lim, Two-Dimensional Signal and Image Processing. 

Prentice Hall, 1990. 
[2] Jelena Kovacevic, "Subband Coding Systems Incorporating 

Quantizer Models," IEEE Trans. Image Processing, vol. 4, 
no. 5, pp. 543--553, May 1995. 

[3] Michael G. Strintzis and Dimitrios Tzovaras, "Optimal 
Construction of Subband Coders Using Lloyd-Max 
Quantizers," IEEE Trans. Image Processing, vol. 7, no. 5, pp. 
649--667, May 1998. 

[4] Wei Li, Olivier Egger and Murat Kunt, "Efficient Quantization 
Noise Reduction Device for Subband Image Coding 
Schemes," in  Proc. ICASSP, 1995, pp. 2209--2212 

[5] L.G. Roberts, "Picture Coding Using Pseudo-random Noise," 
IRE Trans. on Information Theory, Vol. IT--8, pp. 145--154, 
Feb. 1962. 

[6] Karine Gosse and Pierre Duhamel, "Perfect Reconstruction 
versus MMSE Filter Banks in Source Coding," IEEE Trans. 
Signal Processing, vol. 45, no. 9, pp. 2188--2202, Sep. 1997. 

[7] Hyun Wook Park and Yung Lyul Lee, "A postprocessing 
Method for Reducing Quantization Effects in Low Bit-Rate 
Moving Picture Coding," IEEE Trans. Circ. Syst. Video 
Technol., vol. 9, no. 1, pp. 161--171, Feb. 1999. 

[8] S. Minami and A. Zakhor, "An optimization Approach for 
Removing Blocking Effects in Transform Coding,"    IEEE 
Trans. Circ. Syst. Video Technol., vol.5 no.2, pp. 74--82, 
Apr. 1995. 



[9] Thomas Sikora and Hui Li, "Optimal Block-Overlapping 
Synthesis Transforms for Coding Images and Video at Very 
Low Bitrates", IEEE Trans. Circ. Syst. Video Technol., 
vol.6, no.2, pp.157--167, Apr.1996. 

[10] J. S. Lee, "Digital image enhancement and noise filtering by 
use of local statistics," IEEE Trans. Patt. Ana. Mach. Int., 
Vol. PAMI--2, Mar.1980, pp. 165--168. 

[11] N.S. Jayant and P. Noll, Digital Coding of Waveforms. 
Englewood Cliff NJ, Prentice Hall, 1984. 

 
 
Table 1: PSNR comparison for image “lenna”     

Quant. 
Scale factor 

Window 
Size 

Without 
Processing 

Estimated 
spectrum 

Ideal signal 
spectrum 

 
1 

3*3 
5*5 
7*7 

 
35.7846 

36.0455 
36.0614 
36.0915 

36.0939 
36.2242 
36.2804 

 
2 

3*3 
5*5 
7*7 

 
33.6918 

33.9445 
33.9489 
34.0262 

33.9339 
33.8268 
33.8470 

 
3 

3*3 
5*5 
7*7 

 
32.3162 

32.5518 
32.5883 
32.5807 

32.1950 
32.0478 
32.0850 

 
4 

3*3 
5*5 
7*7 

 
31.2420 

31.4670 
31.5125 
31.3105 

30.6940 
30.5492 
30.6068 

 
Table 2: PSNR comparison for image “baboon” 
Quant. 
scale 
factor 

Window 
Size 

Without 
Processing 

Estimated 
spectrum 

Ideal signal 
spectrum 

 
1 

3*3 
5*5 
7*7 

 
27.7757 

28.0092 
27.9617 
27.8875 

28.3970 
28.4602 
28.4102 

 
2 

3*3 
5*5 
7*7 

 
25.7307 

25.9200 
25.9083 
25.8800 

26.1328 
26.1796 
26.1881 

 
3 

3*3 
5*5 
7*7 

 
24.7483 

24.9379 
24.9233 
24.9057 

25.0621 
25.0820 
25.0828 

 
4 

3*3 
5*5 
7*7 

 
24.0792 

24.2600 
24.2417 
24.1907 

24.2916 
24.2908 
24.2894 

 
Table 3: PSNR comparison for image “pepper” 
Quant. 
scale 
factor 

Window 
Size 

Without 
Processin

g 

Estimated 
spectrum 

Ideal signal 
spectrum 

 
1 

3*3 
5*5 
7*7 

 
34.7710 

34.9688 
34.9486 
34.9763 

35.0843 
35.0301 
35.0754 

 
2 

3*3 
5*5 
7*7 

 
33.0589 

33.2363 
33.2530 
33.2870 

33.1214 
33.0730 
33.0580 

 
3 

3*3 
5*5 
7*7 

 
31.8785 

32.0494 
32.0866 
32.0559 

31.6776 
31.5827 
31.5666 

 
4 

3*3 
5*5 
7*7 

 
30.9413 

31.1117 
31.1537 
30.9469 

30.4111 
30.2913 
30.2871 

 
 
 

Table 4. Error variance changes for each subband after 
noise reduction for the case of uniform scalar quantizer. 

coef.    33×     55×  Coef.   33×    55 ×  
0 -6.9  -7.16 32 -19.58 -10.51 
 1 -8.47  -8.35 33 -22.22 -7.69 
 2 -14.58 -17.03 34 -9.30 0.30 
 3 -13.88 -13.44 35 -0.57 0.30 
 4 -14.65 -14.35 36 -2.07 1.13 
 5 -10.03 -8.55 37 -8.95 1.64 
 6 -22.54 -22.29 38 -10.96 0.18 
 7 -13.73 -13.27 39 -14.87 -6.18 
 8 -12.52 -11.97 40 -8.10 1.58 
 9 -18.55 -19.88 41 -8.88 0.54 
10 -15.73 -17.61 42 -6.61 -0.95 
11 -18.32 -18.66 43 -4.17 -9.01 
12 -15.57 -14.58 44 -4.77 -0.14 
13 -17.40 -17.50 45 -3.60 0.80 
14 -19.82 -20.06 46 -4.97 -0.04 
15 -23.86 -16.98 47 -5.55 0.41 
16 -17.21 -16.27 48 -1.15 0.95 
17 -16.61 -14.44 49 -2.22 0.26 
18 -11.72 -10.94 50 -1.70 -0.10 
19 -18.21 -18.12 51 -1.50 0.07 
20 -18.03 -16.09 52 -0.77 0.16 
21 -10.53 -2.29 53 -0.49 0.35 
22 -21.17 -12.65 54 -0.17 -0.15 
23 -23.93 -17.40 55 -0.21 0.11 
24 -18.65 -14.41 56 -0.51 -0.32 
25 -20.29 -13.36 57 -0.78 -0.17 
26 -21.83 -11.81 58 -0.29 -0.76 
27 -19.78 -7.08 59 0.19 0.00 
28 -8.11 1.01 60 -0.10 -0.12 
29 -15.36 -3.21 61 -0.08 -0.04 
30 -24.63 -14.32 62 -0.04 0.00 
31 -20.17 -9.85 63 0.03 0.05 

 
 

Figure 1. Reconstructed PSNR versus the number of 
processed subbands for image Lenna. 


