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ABSTRACT
As a complement to the periodogram, low-complexity fre-
quency estimators are of interest. One such estimator is
based on Prony’s method and rely on phase information of
the auto-correlations. Both performance and computational
complexity are functions of the choice of correlations used
in the estimator and often we have a trade off situation. In
this paper, frequency estimation from an arbitrary set of es-
timated auto-correlations is studied. We further introduce a
design strategy by optimizing a performance criterion given
a predetermined computational constraint. We illustrate this
by numerical examples.

1 Introduction

Estimation of the parameters of a noise corrupted sinu-
soidal model is a frequently addressed problem in the sig-
nal processing literature. Starting with an observed sample���������
	�������	�������������

where
�

is the number of data points,
there exist numerous methods which can be used to estimate
the sought parameters. Often, the estimation of the frequen-
cies is of particular interest. It is well known that in most ap-
plications, excellent estimates of the sought frequencies are
easily obtained by peak-picking the Periodogram of data [1].
However, it is not applicable when the real-time constraints
on numerical complexity requires low-complexity methods.

There have been a large amount of papers on low-
complexity estimators. Basically, they can be divided into
two classes, that is data based and correlation based. In this
paper, we concentrate on the single tone case and correlation
based frequency estimation. Consider the single tone model������������� i � �"! ���#���$	 �%�&�'	�������	(�)�*�
where

�+�-, ��, � i . is a complex-valued amplitude. The noise�/���#���
�
is zero mean complex-valued circular white Gaussian

with variance 0�1 . For notational brevity and without loss of
generality we let 24365 �'	87:9�� be the normalized (angular)
frequency. The parameters (

, ��,
, ; , 2 , 0�1 ) are all unknown,

but the frequency 2 is the parameter of main interest.
For correlation based estimators, an estimate of the fre-

quency is obtained by the information of one or several esti-
mated entries of the auto-correlation sequence of

���#���
< �#=>�?�A@ 5 ���#���B�DC:���E�F=>�HGI��, ��, 1 � i � J ! 0 1�K JML N (1)

where
@ 5PO G denotes statistical expectation. Further, K JML N

is the Kronecker delta and
� C �

denotes complex conjugate.
From data, we can form the sample correlation sequence�RQ< �����
	�������	SQ< ���4�A�/�
�

, where
Q< �#=>�

is, for example, the un-
biased estimator

Q< ��=%�T� �
�)�F=

UWVYXZ
�:[YJ

���#���\� C �#�%�F=%�$�
(2)

From (1) it is evident that information about the frequency is
gathered in the phase angle of < �#=>�

, that is, for
=^]�&�

,

= 2 �&_ 5 < ��=%�\G ! 7`9Ia
(3)

for some integer
a

satisfying
�Eb&adc&=

. Here
_ 5PO G denotes

the phase angle in 5 �'	�7`9�� .
For

=e�)�
it is evident from (3) that

af�g�
, and we can

form an estimate of the frequency as
Q2 �h_ 5 Q< �B�/�\G . Lank,

Reed and Pollon showed in [2] that the performance of the
linear prediction estimator can be increased by using a dif-
ferent correlation lag

=i�kjl]�m�
. A disadvantage with

using
=n�-jgop�

is the introduction of ambiguities to the
frequency estimates. If this ambiguity cannot be resolved,
the frequency range is reduced to

, 2 ,�cq9sr`j
. To resolve this

ambiguity a sequence of correlations is required, e.g. the full
sequence < ��/�$	�������	 < ���^�t���

. This is not computationally
efficient though and we have to rely on a much smaller set
of unv �

correlations. Clearly, one can use the truncated
sequence < �B�/�$	������/	 < � u �

and fit the unwrapped phase to a
straight line [3].

Both the threshold level and the statistical efficiency at
high SNR, for this class of methods, vary with the number
of correlations, the choice of correlations, weighting of the
phases as well as the weighting of the sample correlation cal-
culations.

2 Frequency Estimation from Arbitrary Sets of Corre-
lations

Starting with the problem of estimating the frequency from
phase information of u correlations according to (3), a sys-
tem of u equations and u ! �

unknowns
� 2 	Ba X 	�������	Ba�wx�

follows y 2 �&z ! 7`9R{



where,
y � 5 j X �����(j w G T,

z � 5 � X ����� � w G T and
{ �

5 a X �����Ba w G T. Further, ��� � _ 5 < � j � �HG and
�/j � � is the set

of correlation lags (strictly positive integers). Note that
a � is

a non-negative integer less than
j � , hence equation � in (2)

gives
j � possible values of 2 . In an ideal case (no noise)

only one 2 satisfies all the u equations if there is no com-
mon divisor among

�/j � � . With noisy measurements we can
solve for 2 in a least squares sense for every combination
of

��a � � and pick the best one. The number of combinations
is �j ��� w � [ X j � , but only a subset of these are feasible in
practice and the search is reduced.

With the phase estimates
Qz&� 5 _ 5 Q< ��j X �HG�������_ 5 Q< ��j?w"�\GPG T a

weighted least squares (WLS) problem can be formulated [4]
and given

{
and a constant weight � , a closed form expres-

sion for
Q2 yields

Q2 � {����
y

T � � Qz ! 7:9R{S�y
T � y �

(4)

This render the concentrated WLS problem
Q{ �
	���������������� � Qz ! 7`9R{ � T ���� � Qz ! 7`9R{ �

(5)

where � �� � � �! ��� T  �
T  � and "$# is the set of feasible com-

binations. The original frequency estimation problem is now
separated into two subproblems. First, phase unwrapping,
i.e., determining the unknown set

��a � � in (5). Second, fre-
quency estimation from the unwrapped phase, i.e., (4). De-
spite the joint nature of the problem, phase unwrapping and
frequency estimation are often treated separately in the lit-
erature. In a high SNR scenario though, the probability of
an incorrect phase unwrapping is negligible, which justifies
frequency estimation from an unwrapped phase.

The phase unwrapping in (5) is identifiable if there is no
common divisor among the entries in

y
. If

�/j � � are all rel-
atively prime, the complexity can be reduced. In [4] an al-
ternative approach to the phase unwrapping in (5) is intro-
duced. That method is computationally more efficient, but
yields the same performance. We assume that

{
is known or

correctly estimated, and consider the frequency estimation
problem given a set of u sample correlations.

2.1 Frequency Estimator

Let
Q< ��j X �$	�������	 Q< ��j?w"� (ordered such that

j X cp������c j?w
)

be u sample correlations. Any frequency estimator based
on phase information can be formed as a weighted average
of the unwrapped phase, i.e.,

Q2&% � y �T�(' T � Qz ! 7`9R{ �
(6)

where
'

is a weighting vector with
'

T
y � �

for unbiased
estimates. For instance, the estimator in (4) is a special case
of (6). For clarification we explicitly state that the estimate
is a function of

y
.

Let ) be the covariance matrix of
Qz

. Then the variance
of the weighted estimator

Q2�% , as given in (6), is * 	�� 5 Q2&% G��'
T ) ' . With use of the Gauss-Markov Theorem the optimal

(minimal variance) weighting scheme, for a given SNR is'
opt
� y �?� ) VYX yy

T ) V�X y
with the corresponding estimator

Q2 opt
� y � �+' T

opt

� y �$� Qz !7`9R{ �
. Note that this coincides with the WLSE when the

weighting matrix is � � ) VYX
. The variance of this esti-

mator is * 	�� 5 Q2 opt
� y �HGY� �y

T ) V�X y (7)

and may serve as a lower bound on the performance of this
class of frequency estimators, given the correlation lags

y
.

This bound is tighter than the CRB given by [1]. An asymp-
totic expression for ) as ,�-/.
021 is explicitly given by [4]

5 ) G � L 3 � �
,�-/.

4 ������� j � 	8�)�Fj 3 �� �p� j � �����6� j 3 �
! K � L 37 ,5-6. � �p� j � �87 (8)

where 9;: � . Hence, we have an explicit expres-
sion of the asymptotic (as ,5-6. 0 1 ) performance< �=�

SNR >@? ,5-6. OA* 	�� 5 Q2 opt
G
, that is a function of

y
. Recall

that this implies the use of a suboptimal weighting' ? � y �?� < �=�
SNR >B? ' opt

� y �

which is feasible to calculate for any
y

.
It is well known that frequency estimation suffers from

threshold effects. Algorithms that rely on phase data have a
higher threshold due to their use of phase unwrapping. An
incorrect phase unwrapping gives a dramatic error in the fre-
quency estimate, which is the main contribution to the thresh-
old effect.

As the SNR decreases a correct analysis must incorporate
both the probability of an incorrect phase unwrapping as well
as a variance expression. For SNR values below the threshold
the phases tend to be uncorrelated and uniformly distributed
over 5 �D	87:9�� and the frequency cannot be determined. In this
case the weighting has no effect on the performance. Thus,
if the frequency estimator is to operate in a low SNR envi-
ronment one has to choose a correlation lag constellation

y
that gives a low SNR threshold. This is in general achieved
for small

j � [4].

3 Design Strategy

From a designing point of view we seek the best estimator
given a computational complexity. The aim is to minimize
the variance of the frequency estimator in (6). We consider
the high SNR case. To compensate for the threshold effect
we put the additional term C y C�1 to the variance. This gives
the cost functionD � y �?� �B� �FER� 4 < ���

SNR >@? ,�-6. OG* 	�� 5 Q2 opt
G 7 ! E C y C 1 (9)

where
E

(
� bHEAb6�

) is a trade-off parameter between the
asymptotic variance and the threshold level. The asymptotic



variance is a function of
y

and is given by (7) together with
(8).

Empirical studies show that the threshold is not a convex
function of

y
and a relaxation of the problem is not straight-

forward. We know that the probability of an incorrect phase
unwrapping (the reason for the threshold behavior) increases
with increasing values in

y
[4]. Therefore, C y C�1 is a good

approximation and it is also convex in
y

.
Recall from (8) that the covariance matrix includes the

min–function, which in this case causes the cost function (9)
to be non convex, but convex within subregions (defined by
the possible outcomes of this min–function) [4]. For each �
there are three inequalities, defining the subregion

j � ! �"b j ��� X
and ��� ��

j � ! j ��� X b �
orj � ! j ��� X : �

��� ��
�"b*j � b U

1
orU

1
b j � bq�)�q�

�

There are only
7 u feasible regions, but some redundancy

is included for a clearer presentation. Every region � is a
polyhedra which can be written on the form � � � � y b	�D� � � ,
where � � � � and

� � � � are constructed from the inequalities
above.

The number of computations is mainly determined by the
calculation of the sample correlations. To calculate

Q< ��j � �
in (2) it requires 
 ���6� j � � ! �

real valued multiplications
and 
 ��� ��j � � � �

real valued additions. Add to this the
number of computations needed in the phase unwrapping [4]
followed by the weighted average in (6)

�
add

� 
 � u � 
� T
y ! u �*�

�
mult

� 
 � u � 
� T
y ! 
 u

where � � 5 � ����� ��G T. In addition, � phase
� u phase cal-

culations are performed. The number of computations must
be kept below a given maximum �

max. This can be treated
separated in three different constraints, for additions, mul-
tiplications and phase calculations respectively, or weighted
together into a total number of computations as

�
tot

���
a
�

add
! �

m
�

mult
! �

p
�

phase
b �

max
�

(10)

This, as well as the feasible region, is an affine constraint.
Hence, we have the following set of

7 u convex optimization
problems ������������ � � ��� ���� D � y �

(11)

subject to � � � � y b�� � � ��
tot

b �
max

where the first constraint corresponds to the feasible region �
and the second to the numerical complexity. The cost func-
tion

D � y �
is given in (9). The maximum number of compu-

tations � max is chosen by the designer. The complexity con-
straint is easily separated into, for example, number of mul-
tiplications, additions and phase calculations as mentioned
above.

Strictly, an optimization with respect to
y

is subject to the
condition that

y
is an integer vector. In case of non-integer

values, we choose the closest ones. If
�

is large this quanti-
zation effect is negligible.

What is required for a feasible solution to exist? First, note
that the phase unwrapping requires at least u � 7

. Second,
the minimum possible number of computations is attained
for

y � 5 � �+7'	(� � �$G
T, which gives � tot

��� �
if all compu-

tational operations are weighted equally. Hence, � max : ���
.

In Table 1 the design algorithm is summarized.

Table 1: A design strategy subject to a given computational
complexity.

given
� b E%b �

, u � 7
and �

max : � �
. Set

D � 1 .

repeat Solve optimization problem (11).

if feasible solution,
Store the constellation ! and the minimum
value

D � ! �
obtained from solving (11).

if
D � ! � c D

,y#" � !D " � D � ! �
u " � u ! �

else u " �&�
(to exit the repeat loop)

until
7 u ! � : �

4 Design Examples

All simulations are evaluated over 5000 trials and the fre-
quency is, from trial to trial, drawn from a uniform distri-
bution in the interval 5 9sr 
 	$�S9sr 
 G . The number of snapshots
is
� �%�&�

and we assume additions and multiplications are
equally efficiently implemented (

�
a
�'�

m
�l�

), but phase
calculations are six times as expensive (

�
p
�#(

).

Example 1. Compared to the WLSE in (4)–(5) we can save
computations by using the phase unwrapping in [4].
For the WLSE we set the following parameters: � �) VYX 	 u �^7

. The correlation lag constellation
y �

5 � 	f�)�:G
T is used, which follows the suboptimal strat-

egy proposed in [4]. We choose the number of com-
putations ( � max

�+*S7,(
) required by the WLSE as the

constraint in our design algorithm. We put a threshold
penalty of

EE�t�'� 7
. The design algorithm returns (with

lags rounded to closest integer)
y � 5 *'	 �/7�G T. The per-

formance is compared in Figure 1. By using the low



complexity phase unwrapping we can allocate compu-
tational resources to smaller values in

y
without losing

in performance.
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Figure 1: Design examples 1 and 2. The WLSE
���:�

, the Fitz� ! � estimator and Kay’s estimator
��� �

are used as references
for computational complexity. The performances of the es-
timators proposed by the design algorithm are the same in
both examples, and is shown with a solid line.

Example 2. The same setup as in example 1, but with the
Fitz estimator with u �n7

as a computational com-
plexity reference ( � max

� * ���
). The design algorithm

returns
y � 5 * 	 �/7`G T. Note that we obtain the same

correlation lag constellation as in the previous example,
and therefore plot the performance curves in Figure 1 as
well. For high SNR we have lowered the variance, but
we have to pay in a higher threshold.

Example 3. Kay’s frequency estimator [5] is a well known
low complexity estimator. Computationally it requires
less additions and multiplications, but more phase cal-
culations, an operation that in general is more expen-
sive. With the more expensive phases the maximum
number of operations yield ( � max

� 
&
 � ). Together withE ���'� 7
the design algorithm returns

y � 5 *'	 �/7`G T. In
Figure 1 it is seen that we have lowered the threshold
level to a small cost in asymptotic performance.

Next we investigate how sensitive the trade-off between
a low threshold level and a small asymptotic variance is to
variations in

E
. The performance curves for different

E
are

shown in Figure 2 and it is seen that the threshold level de-
creases with increasing

E
, as expected. The trade-off is not

too sensitive to variations in
E

and we may conclude that the
norm of

y
is a good representation of the threshold.

5 Conclusions

We have analyzed a weighted average frequency estimator
based on phase information of the sample correlations. This
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Figure 2: The performance curves for the proposed estimator
(solid lines) that correspond to

E*� 5 0.04, 0.46, 0.77, 0.92,
0.95

G
starting with the rightmost one. In addition the CRB

(dotted line) and the Fitz estimator (dashed line) are included.

estimator includes many of the ones in this class. An optimal
weighting scheme was derived.

We have taken a design approach and formulated a convex
optimization problem to solve for the best constellation. The
objective is to minimize the asymptotic variance subject to a
given computational complexity. A punish can be put to the
incorrect phase unwrapping through a design parameter

E
in

the objective function and thereby keep a low SNR thresh-
old. The algorithm can outperform most correlation based
frequency estimators and we gave three design examples to
illustrate this.
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from proper sets of correlations,” IEEE Trans. on Signal
Processing, 2001, To appear.

[5] Steven M. Kay, “A fast and accurate single frequency
estimator,” IEEE Trans. on Acoustics, Speech and Signal
Proc., vol. 37, no. 12, pp. 1987–1990, 1989.


