
 

 

MULTIPLIERLESS IMPLEMENTATION OF ALL-POLE DIGITAL 
FILTERS USING A LOW-SENSITIVITY STRUCTURE 

 
Mrinmoy Bhattacharya and Tapio Saramäki 

 
Institute of Signal Processing 

Tampere University of Technology 
P. O. Box 553, Tampere, FIN 33101, Finland 

Tel: +358-3-3115-4355, Fax: +358-3-3115-3817 
E-mail: {mrinmoy,ts}@cs.tut.fi 

 
 

ABSTRACT 
 
Multiplierless filters are natural extensions of the low-
sensitivity structures. Some low-sensitivity structures are 
associated with structural alteration and the resulting 
multiplier coefficients are different than the initial designed 
values in these structures. For the cases when coefficient 
values are quite small, they can be implemented in a 
multiplierless manner, i.e., by using only few bit shifts and 
adds and/or subtracts, by converting them to minimum 
signed powers-of-two (MNSPT) or canonic signed digit 
(CSD) forms, and the number of nonzero bits required for 
coefficient representations are quite low. This paper 
investigates a low-sensitivity unconventional structure that 
is very suitable for implementing all-pole digital filters. 
Further, accepting a marginal deviation from the given 
specifications, the required number of nonzero bits 
becomes very low, making the overall implementation 
attractive. Also, one can start with a filter with marginally 
stricter specifications without increasing the filter order. 
Then, the modified coefficient values are quantized such 
that the given overall criteria are still met. 

 
1 INTRODUCTION 
 
Minimum number of signed powers-of-two (MNSPT) or 
canonic signed digits (CSD) representations of binary digits 
are extensively used for representing the multiplier 
coefficients in a multiplierless implementation of a digital 
filter. An MNSPT representation of a coefficient value is 
given by ∑ −

i

t
i

ia ,2 where each ai is either 1 or –1 and ti is a 

positive or negative integer. For instance, 1.93359375 can 
be realised as 2−2−4−2−8. In this example case, the 
multiplication is more efficiently and economically 
achieved with aid of three bit shifts and two subtracts than 
by use of a nine-bit multiplier. 

Methods of optimization is one of the major approaches 
for multiplierless implementations [5−7, 15, 16]. Filter 
design being basically a problem of approximation due to 
the tolerances in specifications, optimization methods are 
used to find the optimal transfer functions under given 
constraints. It comprises of optimizing the filter coefficient 

values such that the resulting filter meets the given criteria 
with its coefficients values being expressible in MNSPT 
forms. While optimization methods are considered to be 
quite satisfactory in general, one may not assure or 
guarantee that the optimal solution will always be found 
under the given constraints. The solution can be 
unsatisfactory, for example, in terms of the filter order, the 
given wordlength of the multipliers, or the specified 
number of shifts and adds (in the case of multiplierless 
implementation), or some combination of them. Under such 
conditions, some parameters or characteristics of the filter 
have to be relaxed to obtain an acceptable design. 

The structures such as sum of allpass filters, including 
lattice wave digital (LWD) filters, coupled with 
optimization methods have shown to yield good results for 
multiplierless implementations [8−11, 15, 16] in the case of 
IIR filters. These filters are characterized by the attractive 
property that there exist LWD structures with the number 
of required multipliers being equal to the filter order, 
thereby decreasing the number of multipliers compared to 
conventional realizations. 

 Another interesting approach is the one that stems from 
design of an odd-order elliptic minimal Q-factor analog 
filter (EMQF) that has some special properties [8−11]. 
These filters are transformed to digital filter using the 
bilinear transformation and the digital filter is implemented 
as a sum of two allpass filters [8−11]. The design and the 
implementation may also be associated with a proper 
expansion of the space of the design parameters such as 
passband (stopband) tolerances, edges, and the filter order.  

Especially, in the case of FIR filters, another approach is 
based on combining simple sub-filters that can be 
implemented using only few shifts and adds and/or 
subtracts. Although quite attractive, to make this approach 
as a viable one, a large database of such filters will have to 
be generated and some optimization method will have to be 
evolved in order to combine some of them to meet the 
desired specifications. 

The feasibility of implementing multiplierless recursive 
digital filters based on coefficient translation methods in 
low-sensitivity structures has been demonstrated in [2, 3]. 
These low-sensitivity structures are based on replacing the 
unit delay element by a simple structure [1, 4], that is 



 

 

equivalent of shifting the origin of the z-plane that results in 
modification of the multiplier coefficients those are to be 
implemented. These modified coefficients when 
implemented in MNSPT or CSD forms, require a few shifts 
and adds and/or subtracts for implementation. Allowing a 
marginally insignificant deviation in the specifications a 
gross reduction in number of nonzero bits (effectively the 
number of shifts and adds and/or subtracts required) was 
seen to be feasible. 

We observe that one low-sensitivity structure in [4], 
while being unconventional, is capable of reducing 
sensitivity of a second-order section with poles only to an 
arbitrary level by varying two parameters. This structure 
becomes a potential candidate for investigating for using in 
multiplierless implementations of filters. We utilize this 
low-sensitivity structure for implementing all-pole filters 
with an equiripple passband behavior [13, 14] in the 
multiplierless manner and achieve interesting results.  
 
2 THE STRUCTURE FOR IMPLEMENTATION 
 
The second-order structure for implementing an all-pole 
section consisting of a pole pair is depicted in Fig. 1. Here, 
k1 and k2 are of the form ∑i

it
ip 2 , where ip is either 1 or 

−1 and the it ’s are integers. These multipliers can be 
realized by using few bit shifts and adds and/or subtracts. 
a1m and a2m, in turn, are the modified multiplier 
coefficients. Normally, the maximum of three bits for k1 
and two bits for k2 are sufficient to reduce the sensitivity 
below that of the majority of other structures [4]. 

The values of k1 and k2 are chosen depending on the 
radial distance and the angular locations of the pole pair 
being located at θjrez ±= . Consider the following second-
order all-pole transfer function: 
 
                H(z) = 1/(1 + a1z–1 + a2 z–2),                            (1) 
 
where θcos21 ra −=  and 2

2 ra = . The modified 
coefficients are given by 
 
a1m = (2k1− a1+x)/2 and a2m= −(a1+x)/2 for 0<θ < π /2   (2) 
 
and 
 
a1m= (2k1− a1−x)/2 and a2m= (−a1+x)/2 for π /2<θ < π .  (3) 
 
Here, 
 (i) x = (a1

2 – 4a2 +4k2)1/2. 
 (ii) k1 is a few bit  approximation closest to 
  (a1 −x)/2   for 0<θ < π/2, and 

(a1+x)/2   for π/2<θ < π. 
(iii) k2  is a few bit approximation closest to a2 with 

k2 being chosen before k1 ensuring that x 
remains real. 

The realization details and the scaling schemes are similar 
to those described in [4]. 

   
  

 
 
 
 
 
 
 
 
3 RESULTS AND DISCUSSIONS 
 
Quite a few all-pole filters were designed according to the 
very simple design scheme described [13, 14] and were 
realized with cascaded second-order sections modified in 
the above-mentioned manner. It was found that for most of 
the cases one bit each for k1 and k2 is sufficient. 

The results for some of the filters are shown in Table 1 
indicating the number of nonzero bits that would be 
required for achieving various levels of passband tolerances 
(the stopband tolerances were generally affected 
negligibly). For these filters one bit each for k1 and k2 was 
used. 

Another filter was designed based on this information, 
with stricter passband tolerances but without any increase 
of the filter order. The number of nonzero bits for the 
revised specification are also shown that gives better 
passband tolerances than the initial specification and with a 
much lower number of nonzero bits required for the initial 
design. To illustrate further, for Filter 1 in Table 1, thirty-
eight nonzero bits were required to achieve a 0.5 dB 
passband variation, whereas for the revised specification 
only thirty-one nonzero bits are needed to achieve a 0.3 dB 
passband variation without any increase in the filter order. 
Similar results are seen for the other filters. 

By increasing the number of bits in realizing k1 and k2, 
an overall reduction of one to two shifts and adds and/or 
subtracts per second-order section is observed in some 
second-order sections for some filters. Similar reduction 
was observed when different quantization levels were tried 
out in different second-order sections for some filters. This 
fact is expected and natural due to the pole locations (with 
its associated sensitivity) of the filter. 

The proposed scheme can be used for recursive filters 
with zeros also, with the zeros being implemented 
separately. Especially, for Chebysev type I filters, the 
numerator polynomials of the transfer function are of form 
(1 + z−1)n. This numerator polynomial can be implemented 
by using multiplierless first-order and second-order 
sections.  

The solid and dashed lines in Fig. 2 show, in the case of 
Filter 1 of Table 1, the amplitude responses for the infinite-
precision filter and for the filter obtained using twenty-four 
nonzero bits (i.e., on the average three nonzero bits per 
multiplier). It is seen that that the deviation between the 
infinite-precision and finite-precision designs is very small 
in the passband. In the transition band and in the stopband 
the deviation is negligible. Similar results were observed 
for other filters. 

y(n) 
z-1 z-1 

a2m a1m 

-k1 

-k2 

x(n) 

Fig. 1. Modified second-order all-pole section. 



 

 

 
 
 

Table 1 The required number of nonzero bits for multiplierless implementations for some filters. 
 

 
Characteristics of  filters 

 
Details of Realization 

Cascade realization of   2nd order unmodified sections requires 
19-bit multipliers 

Number of  nonzero 
bits 

for  8 multipliers 

 
Passband tolerance obtained 

 
Filter 1: 8th order, 

passband=0.1π, stopband=0.17π, 
passband ripple=0.5 dB, 

stopband attenuation= 60 dB 
 

Pole locations: 
   

0.93184802071470 + 0.05833345279549i 
0.93184802071470 − 0.05833345279549i 
0.92833400083769 + 0.16727232624414i 
0.92833400083769 − 0.16727232624414i 
0.92739824714529 + 0.25397933648811i 
0.92739824714529 − 0.25397933648811i 
0.93752236424626 + 0.30625487937977i 
0.93752236424626 − 0.30625487937977i 

 
 

 
(a)  38 

 
(b) 27 

 
(c)  24 

 
(d) 31 

 

 
0.5 dB for filter designed with initial specifications 
 
0.56 dB           …….”……. 
 
0.67 dB           …….”……. 
 
0.3 dB for filter designed with revised 

specifications of 
 passband ripple=0.2 dB and 
stopband attenuation=60 dB 

Cascade realization of  2nd order unmodified sections requires 
23-bit multipliers 

Number of  nonzero 
bits 

for  8 multipliers 

 
Passband tolerance obtained 

 

 
Filter 2: 8th order, 

passband=0.15π, stopband=0.285π, 
passband ripple=0.05 dB, 

stopband attenuation= 60 dB 
 

Pole locations: 
  

0.83870453672116 + 0.08154803312912i 
0.83870453672116 − 0.08154803312912i 
0.83085909222853 + 0.23628457482504i 
0.83085909222853 − 0.23628457482504i 
0.82807597938588 + 0.36677551130473i 
0.82807597938588 − 0.36677551130473i 
0.85015180506249 + 0.45762168906590i 
0.85015180506249 − 0.45762168906590i 

 
(a)  46 

 
(b)  37 

 
(c)  31 

 
(d)  33 

 
 

 
0.05 dB for filter designed with initial specifications  
 
0.0535 dB           …….”……. 
 
0.0676 dB           …….”……. 
 
0.0254 dB for filter designed with revised  

specifications of 
 passband ripple=0.02 dB and 
stopband attenuation=60 dB 

 
Cascade realization of  2nd order unmodified sections requires 

25-bit multipliers 
Number of nonzero 

bits 
for 8 multipliers 

 
Passband tolerance obtained 

 

 
Filter 3: 8th order, 

passband=0.05π, stopband=0.087π, 
passband ripple=0.05 dB, 

stopband attenuation= 50 dB 
 

Pole locations: 
   

0.94358159369431 + 0.03083842399663i 
0.94358159369431 − 0.03083842399663i 
0.94822332550403 + 0.08851492817644i 
0.94822332550403 − 0.08851492817644i 
0.95846996042939 + 0.13447043932229i 
0.95846996042939 − 0.13447043932229i 
0.97523786211604 + 0.16187943758154i 
0.97523786211604 − 0.16187943758154i 

 
(a)  46 

 
(b)  37 

 
(c)  34 

 
(d)  34 

 

 
0.05 dB for filter designed with initial specifications 

 
0.057 dB             ……”……. 

 
0.079 dB             ……”……. 
 
0.0235 dB for filter designed with revised  

 specifications of 
 passband ripple=0.02 dB and 
stopband attenuation=50 dB 
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Fig. 2. Amplitude responses in the case of Filter 1 in Table 1 for 
the infinite-precision filter (dashed line) and for the filter with 
twenty-four nonzero bits (solid line). 

 
4 CONCLUSIONS 
 
We have shown that the multiplierless implementation of 
all-pole filter utilizing a typical low-sensitivity structure is 
a feasible and attractive proposition. Further, considering 
the acceptance of marginally small deviations in passband 
and stopband tolerance specifications compared with the 
initial infinite-precision design, the method becomes quite 
attractive for implementing all-pole filters in the 
multiplierless manner. Alternatively, one can start with a 
design with stricter specification without any increase in 
the order of the filter. Our analysis indicates that utilizing 
the approach outlined earlier it is possible to achieve a 
multiplierless realization with around four nonzero bits per 
multiplier. Future work is devoted to applying optimization 
techniques to further reducing the number of nonzero bits. 
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