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ABSTRACT

This paper deals with the problem of speech enhance-
ment when a corrupted speech signal with an additive
colored noise is the only information available for pro-
cessing. Kalman filtering is known as an effective speech
enhancement technique, in which speech signal is usu-
ally modeled as autoregressive (AR) process and rep-
resented in the state-space domain. In the above con-
text, all the Kalman filter-based approaches proposed
in the past, operate in two steps: first, the noise and
the signal parameters are estimated, and second, the
speech signal is estimated by using Kalman filtering. In
this paper a new sequential estimators are developed for
sub-optimal adaptive estimation of the unknown a priori
driving processes statistics simultaneously with the sys-
tem state and a recursively least-squares lattice (RLSL)
algorithm is used for adaptive estimation of the speech
and noise AR parameters. The algorithm provides im-
proved speech estimate at little computational expense.

1 INTRODUCTION

Speech enhancement using a single microphone system
has become an active research area for audio signal en-
hancement. The aim is to minimize the effect of noise
and to improve the performance in voice communication
systems when input signals are corrupted by background
noise.

Kalman filtering is known as an effective speech en-
hancement technique, in which speech signal is usu-
ally modeled as autoregressive (AR) process and rep-
resented in the state-space domain. Many approaches
using Kalman filtering have been referenced in the lit-
erature. They usually operate in two steps: first, the
noise and the signal parameters are estimated, and sec-
ond, the speech signal is estimated by using Kalman fil-
tering. These approaches differ essentially one from the
other by the choice of the algorithm used to estimate
the parameters of such model, the models adopted for
the speech signal and the additive noise. In [1], [2] and
[3] the noise under a simplified assumption is consid-
ered as an white Gaussian process, but in [4], [5] and
[6] the noise is considered colored. Paliwal and Basu

[1] have used estimates of the speech signal parameters
from clean speech, before being contaminated by white
noise. They then used a delayed version of Kalman fil-
ter in order to estimate the speech signal. In [2], Op-
penheim et al. have used a time-adaptive algorithm to
adaptively estimate the speech model parameters and
the noise variance. Gannot et al. [6] have proposed the
use of EM (Espectation-Maximisation) algorithm to it-
eratively estimate the spectral parameters of speech and
noise parameters. The enhanced speech signal was ob-
tained as a byproduct of the parameter estimation al-
gorithm. In [5], the coefficients of the AR processes
and the AR driving processes variances are estimated
based on EM algorithm. Gabrea and O’Shaughnessy [3]
have proposed estimating the noise and driving process
variances using the property of the innovation sequence,
obtained after a preliminary Kalman filtering with an
initial gain.

In this paper a new adaptive Kalman filter based
method is proposed to recover the speech signal from
a sequence of the speech signal corrupted by an addi-
tive colored noise. The speech signal and the additive
noise are modeled as the AR processes.

The RLSL [7] algorithm is proposed for adaptive esti-
mation of the speech and noise AR parameters because
it has a rate of convergence typically an order of magni-
tude faster than the least mean squares (LMS) algorithm
used in [2].

The sequential estimators are derived for sub-optimal
adaptive estimation of the unknown a priori driving pro-
cesses statistics simultaneously with the system state by
reformulating and adapting the classical approach used
for control applications.

A limited memory algorithm is developed for adaptive
correction of the a priori statistics, which are intended
to compensate for time varying model errors. The al-
gorithm involves using the state corrections to estimate
the driving processes variances and provides improved
state estimates at little computational expense.

The paper is organized as follows. In Section II we
present the speech enhancement approach based on the
Kalman filter algorithm. Section III is concerned with
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the estimation of AR parameters and driving processes
statistics. Simulation results are the subject of Section
IV.

2 NOISY SPEECH MODEL AND KALMAN
FILTERING

The speech signal s(n) and the additive noise v(n) are
modeled as the pth-order order and qth-order AR pro-
cesses:

s(n) =
p∑

i=1

ais(n− i) + u(n) (1)

v(n) =
q∑

j=1

bjv(n− j) + w(n) (2)

y(n) = s(n) + v(n) (3)

where s(n) is the nth sample of the speech signal, v(n)
is the nth sample of the additive noise, y(n) is the nth
sample of the observation, ai is the ith AR speech model
parameter and bj is the j th AR noise model parameter.

This system can be represented by the following state-
space model:

x(n) = Fx(n− 1) + d(n) (4)

y(n) = Hx(n) (5)

where:

1. x(n) is the (p + q)× 1 state vector

x(n) = [s(n−p+1), · · · s(n), v(n−q+1), · · · , v(n)]T

(6)

2. d(n) is the (p + q)× 1 vector

d(n) = [0, · · · , 0, u(n), 0, · · · , 0, w(n)]T (7)

3. the sequences u(n) and w(n) are uncorrelated
Gaussian white noise sequences with means ū(n)
and w̄(n) and the variances σ2

u(n) and σ2
w(n)

4. F is the (p + q)× (p + q) transition matrix

F =
[

Fs 0
0 Fv

]
(8)

Fs =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ap ap−1 ap−2 · · · a1

 (9)

Fv =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
bq bq−1 bq−2 · · · b1

 (10)

5. H is the 1× (p + q) observation row vector

H = [0, · · · , 0, 1, 0, · · · , 0, 1] (11)

The standard Kalman filter [8] [9] provides the updat-
ing state-vector estimator equations:

e(n) = y(n)−Hx̂(n/n− 1) (12)

K(n) = P(n/n− 1)H×

× (HP(n/n− 1)HT )−1 (13)

x̂(n/n) = x̂(n/n− 1) + K(n)e(n) (14)

P(n/n) = (I−K(n)H)P(n/n− 1) (15)

x̂(n + 1/n) = Fx̂(n/n) + d̄(n) (16)

P(n + 1/n) = FP(n/n)FT + Q(n) (17)

where:

1. x̂(n/n − 1) is the minimum mean-square estimate
of the state vector x(n) given the past observations
y(1), . . ., y(n− 1)

2. x̃(n/n − 1) = x(n) − x̂(n/n − 1) is the predicted
state-error vector

3. P(n/n − 1) = E[x̃(n/n − 1)x̃T (n/n − 1)] is the
predicted state-error correlation matrix

4. x̂(n/n) is the filtered estimate of the state vector
x(n)

5. x̃(n/n) = x(n) − x̂(n/n) is the filtered state-error
vector

6. P(n/n) = E[x̃(n/n)x̃T (n/n)] is the filtered state-
error correlation matrix

7. Q(n) = E[(d(n)− d̄(n))(d(n)− d̄(n))T ] is the driv-
ing processes correlation matrix

8. e(n) is the innovation sequence

9. K(n) is the Kalman gain

The estimated speech signal can be retrieved as the
pth component of the state-vector estimator x̂(n/n).
However, the transition matrix and the driving processes
statistics are unknowns and hence must be estimated.
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3 PARAMETERS ESTIMATION

The estimation of the transition matrix, which contains
the AR models parameters, was made using two adap-
tive filters based on RLSL algorithm, to provide the
best prediction in the sense of least-squarer error of the
present value of the speech and the noise. The RLSL
algorithm is in fact rewriting of the QR-decomposition-
based least-squares lattice algorithm (QRD-LSL), which
represent the most fundamental form of an order-
recursive adaptive filter. This algorithm enjoys many of
the properties of the QRD-LSL algorithm, namely, fast
convergence, modularity, and an integral set of useful
parameters and variables for signal processing applica-
tions. For a such purpose we estimate the transition
matrix in two steps: first, we estimate the noise AR
parameters during the silence period and second, the
speech AR parameters using the pth component of the
state-vector estimator x̂(n/n).

The estimation of driving process statistics needed to
compute the vector d̄(n) and the matrix Q(n) is de-
rived under the assumption of the constant mean and
variance over N samples u(n), u(n−1), · · · , u(n−N +1)
and w(n), w(n − 1), · · · , w(n − N + 1), respectively by
reformulating and adapting the approach proposed in
control by Myers and Tapley [10]. Using the state prop-
agation equation (4) the samples of the driving process
u(n) are given by the equation:

u(n) = H1[x(n)− Fx(n− 1)] (18)

where H1 = [0, · · · , 0, 1, 0, · · · , 0, 0]. The true state vec-
tors x(n) and x(n− 1) are unknown, so u(n) cannot be
determined, but the approximation:

α(n) = H1[x̂(n/n)− x̂(n/n− 1)] (19)

can be used [10]. The samples α(n) are assumed to be
representative of u(n) and can be considered indepen-
dent and identically distributed. Based on the last N
measurements the mean ᾱ(n) and the variance σ2

α(n)
are estimated [11]. An unbiased esimator for ᾱ(n) is
taken as the sample mean:

ˆ̄α(n) =
1
N

N−1∑
i=0

α(n− i) (20)

and an unbiased estimator for σ̂2
α(n) is obtained by:

σ̂2
β(n) =

1
N − 1

N−1∑
i=0

[α(n− i)− ˆ̄α(n)]2 (21)

The estimation of the driving process mean is:

ˆ̄u(n) = ˆ̄α(n) (22)

If the samples α(n) are considered independent and
identically distributed the expected value of σ̂2

α(n) is

E{σ̂2
α(n)} =

1
N

N−1∑
i=0

E{[α(n− i)]2} (23)

The analysis reduces to expanding E{[α(n − i)]2} in
term of σ2

u(n). We write α(n) in term of the filtered
state-error vectors:

α(n) = −H1x̃(n/n) +H1Fx̃(n− 1/n− 1) + u(n)− ū(n)
(24)

Since the filtered state-error vectors errors are not inde-
pendent, the correlation are avoited by writing:

α(n) + H1x̃(n/n) = H1Fx̃(n− 1/n− 1) + u(n)− ū(n)
(25)

The variance of this equation is:

E{[α(n)+H1x̃(n/n)]2} = H1FP(n−1/n−1)FT HT
1 +σ2

u(n)
(26)

Now we develop E{[α(n) − H1x̃(n/n)]2} in term of
E{[α(n)]2} and of other computed terms in the Kalman
filter:

E{[α(n) + H1x̃(n/n)]2} = E{[α(n)]2}

+ 2E{α(n)x̃T (n/n)HT
1 }

+ H1P(n/n)HT
1 (27)

Using the Kalman filter equations the filtered state-error
vector can be rewriting as

x̃(n/n) = [I−K(n)H1]x̃(n/n−1)−K(n)[v(n)−v̄] (28)

and the second term in (26) is

E{α(n)x̃T (n/n)HT
1 } = −H1P(n/n)HT

1

+ H1P(n/n− 1)×

× [I−K(n)H1]T HT
1 (29)

By combining (26)(27) and (29) the resulting expression
for is E{[α(n)]2} is

E{[α(n)]2} = H1FP(n− 1/n− 1)FT HT
1

+ H1P(n/n)HT
1

− 2H1P(n/n− 1)[I−K(n)H1]T HT
1

+ σ2
u(n) (30)

Using (21) (23) and (26) an unbiased estimator of σ2
u(n)
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is given by:

σ̂2
u(n) =

1
N − 1

{
N−1∑
i=0

[α(n− i)− ˆ̄α(n)]2

− N − 1
N

H1FP(n− i− 1/n− i− 1)FT HT
1

− N − 1
N

H1P(n− i/n− i)HT
1

+ 2
N − 1

N
H1P(n− i/n− i− 1)×

× [I−K(n− i)H1]T HT
1 } (31)

The samples of the driving process w(n) can be ap-
proximated by:

β(n) = H2[x̂(n/n)− x̂(n/n− 1)] (32)

where H2 = [0, · · · , 0, 0, 0, · · · , 0, 1]. Based on the last
N measurements an unbiased estimator for the mean of
the driving process w(n) is obtained by:

ˆ̄w(n) = ˆ̄β(n) (33)

and an unbiased estimator of σ2
w(n) is obtained by:

σ̂2
w(n) =

1
N − 1

{
N−1∑
i=0

[β(n− i)− ˆ̄β(n)]2

− N − 1
N

H2FP(n− i− 1/n− i− 1)FT HT
2

− N − 1
N

H2P(n− i/n− i)HT
2

+ 2
N − 1

N
H2P(n− i/n− i− 1)×

× [I−K(n− i)H2]T HT
2 } (34)

4 SIMULATION RESULTS

The approach was tested using a speech signal and an
additive noise. The speech signals are sentences from the
TIMIT database and the noise signals are the samples
from the NOISEX database. Table 1 offers a comparison
with others approaches, by showing averaged SNR gain
based on 10 speech signals and 10 noise simulations for
each speech signal.

Compared to the method similar in structure previ-
ously proposed by the author in [5] and to the Gibson’s
algorithm [4], the proposed method provides increases
in SNR, as well as improved speech quality and intelli-
gibility for input SNR between -5 and 15 dB. Gibson’s
algorithm needs two or three iterations to get the high-
est SNR gain and lead to computational requirements
higher than those corresponding to the proposed ap-
proach.

Output SNR
Input SNR [4] [5] proposed

(dB) (dB) (dB) (dB)
-5.00 1.24 3.14 3.81
0.00 4.16 4.78 5.11
5.00 7.35 7.89 8.29

10.00 11.21 11.56 12.14
15.00 15.62 15.93 16.07

Table 1: Output SNR for an Input Speech Signal
plus Colored Noise
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