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ABSTRACT 
In this paper, a novel realization of two-dimensional nonseparable 
wavelet filter bank with adaptive filter parameters is proposed. 
Two-dimensional generalization of the previously presented 1-D 
scheme [4] is based on nonseparable quincunx decimation. 2-D 
filters are designed directly rather then obtained from 1-D filters 
using the pyramid scheme. Described space variant wavelet filter 
bank has several advantages when compared to fixed banks. Basic 
convergence and regularity properties of the limit wavelet 
functions and scales are provided by fixed part of the filter bank. 
Variable part of the bank adapts to the analyzed signal. Realization 
is based on the lifting scheme, derived from a method of fixed 2-D 
wavelet filter bank design. Original 2-D interpolation of samples 
in the space domain is modified to an approximation scheme that 
can be recomputed at each step of decomposition. Adaptation 
criterion is calculated from wavelet coefficients. Wavelet filter 
banks with adaptive filter parameters can outperform fixed banks 
in a number of applications, but the suitable adaptation criterion is 
still to be found. 

1 INTRODUCTION 
Analytical properties of wavelet filter banks are closely related to 
the convergence and regularity of limit wavelet functions and 
scales. More zero moments correspond to higher regularity, which 
results in better description of smooth and correlated parts of the 
analyzed image [1]. A number of well-known wavelet families has 
been developed, based on criteria such as orthogonality, minimum 
phase, symmetric or near symmetric impulse response, and many 
others. Number of vanishing moments of a fixed filter bank is 
usually chosen as a compromise between filter complexity and 
desired regularity. For a given order, wavelet filters usually have 
all zeros of their frequency response on Nyquist or DC frequency. 
But, it does not necessary result in maximum selectivity of the 
filter bank for a given input image. 

Proposed scheme enables changes of filter parameters of both 2-D 
filters in the bank at each point of decomposition, depending on the 
local properties of the analyzed image. Two-dimensional 
nonseparable PR filter bank is intended to form a wavelet tree or 
wavelet packet tree, so the convergence and some degree of 
regularity must remain. The adaptation criterion is computed from 
wavelet coefficients, with the goal of more compact representation 
of the analyzed signal.  

In section 2 we describe construction of the proposed adaptive 2-D 
filter bank. Kovačević and Sweldens [2] proposed a construction of 
wavelet families of increasing order in arbitrary dimensions. The 

construction is based on the lifting scheme (paragraph 2.1), using 
interpolation of samples in the multi-dimensional space. Among 
different nonseparable 2-D polyphase decomposition schemes, we 
have chosen quincunx decimation (paragraph 2.2). A sketch of the 
construction is given in paragraph 2.3. Samples from one coset are 
estimated from the other using 2-D interpolation functions of 
different orders.  

In paragraph 2.3 we explain the proposed structure of the 
adjustable lifting step. In chapter 3 we discuss the filter bank 
properties. To ensure convergence and minimum regularity, filters 
are split in the fixed and variable part. Filter parameters can be 
changed at each point of decomposition, as well as the associated 
limit wavelet functions and scales. We deal with a kind of second 
generation 2-D wavelets. Fixed vanishing moments plus 
limitations on variable filter parameters ensure convergence and 
reasonable regularity of decomposition functions. 

2 FILTER BANK STRUCTURE 
2.1 Lifting scheme 

The lifting scheme enables easy construction of perfect 
reconstruction time or space variant and non-linear filter banks. 
Daubechies and Sweldens 98 [3] show that any two-band FIR filter 
bank can be factored in a set of lifting steps, using Euclidean 
algorithm. 
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Figure 1. One-dimensional 2-channel PR filter bank 
factored in lifting and dual lifting steps. 

The polyphase matrix of the filter bank from Figure 1 is factored 
in two triangular sub-matrices:  
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2.2 Lifting scheme in two dimensions with quincunx 
decimation 

A straightforward way of implementing 2-D lifting scheme is 
generalization of 1-D scheme in two dimensions that is called 



Mallat pyramid scheme.   
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Figure 2. Two-dimensional sub-band decomposition using 
separable pyramid algorithm. 

It can be seen from Figure 2 that this approach is separable, 
treating differently columns and rows. Because of its horizontal 
and vertical bias it cannot be considered as a truly two-dimensional 
approach. This bias will introduce perceptually greater distortion 
after applying nonlinear operations on wavelet coefficients (such 
us soft thresholding and quantization). Truly two-dimensional 
transforms that treat all directions in the picture similarly are better 
tuned to the human visual system and therefore preferred. 

We used nonseparable quincunx decimation. Quincunx decimation 
decomposes the input image into two cosets as shown in the right 
of Figure 3.  
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Figure 3. Separable (left) and quincunx nonseparable lattice (right) 

with their unit cells (marked gray). 
Subsampling matrix D for quincunx decimation is defined through 
a pair of vectors that form quincunx unit cell: 
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Hence, proposed 2-D filter bank block scheme is almost the same 
as the one shown in Figure 1. 1-D polyphase decomposition is 
replaced by the 2-D nonseparable quincunx decimation scheme 
and the 1-D interpolating prediction and update filters are changed 
to their 2-D equivalents. 

2.3 Adjustable lifting step 

We construct the prediction filter as a weighted sum of additive 
components: 
P(z1,z2) = p1⋅P2(z1,z2) + p2⋅[P4(z1,z2) − P2(z1,z2)] + p3⋅[P6(z1,z2) −  
P4(z1,z2)] + p4⋅[P8(z1,z2) − P6(z1,z2)]  + ... 

Filters P2, P4, P6 and P8 are Neville interpolating filters that are 
constructed as described in Kovačević and Sweldens [2]. 
Symmetric interpolation neighborhoods (rings shown in Figure 5) 
are selected and de Boor-Ron algorithm is used to construct P2, P4, 
P6 and P8 filter coefficients. The coefficients are given in Table 1. 
Higher filter orders require more neighboring rings to be involved.  

If the multiplying parameters {p1, p2, p3, p4} are constant, chosen 
from sets {1,0,0,0}I, {1,1,0,0}II, {1,1,1,0}III and {1,1,1,1}IV, lifting 

steps P2(z1, z2), P4(z1, z2), P6(z1, z2) and P8(z1, z2) respectively are 
obtained. They correspond to 2, 4, 6 or 8 zero moments of the 
associated 2-D wavelet function. 
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Figure 4. Structure of the proposed adaptive lifting step 
(prediction stage). P2, P4, P6 and P8 are Neville 2-D 
interpolating filters, p2, p4, p6 and p8 are variable 
parameters. 
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Figure 5. Quincunx lattice in the sampled domain 
containing X1 coset samples. Ring numbers are marked. 
Black circle represents position of the predicted sample in 
coset X2. 
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2 1       ×2-2 

4 10 -1      ×2-5 

6 174 -27 2 3    ×2-9 

8 23300 -4470 625 850 -75 9 -80 ×2-16 

Table 1. Quincunx Neville filters coefficients. N is the 
number of vanishing moments. 

An example constructed using Figure 5 and Table 1: 
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Structure in Figure 4 enables splitting of prediction filter in the 
fixed and variable part.  Desired number of vanishing moments is 
achieved by fixing factors p1 to p4. For example, p1 =1 results in 2, 
or p1=p2=1 results in 4 vanishing moments. Residual parameters 
are used as variables that can be changed at each point of 
decomposition. 

2.4 Adjustable dual lifting step 

Construction of the adaptive update step is shown in Figure 6. 
Now, let us fix multiplying factors {p1, p2, p3, p4} to ones and zeros 
according to sets I-IV from the previous paragraph. Each set results 
in one of the corresponding well known P2, P4, P6 and P8 
predictors. 
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Figure 6. Realization of the dual lifting step (update stage) 

In order to provide vanishing moments to the limit scale function, 
we set the gains ui: 

p1,…, pi =1 i=1 (I) i=2 (II) i=3 (III) i=4 (IV) 
u1 1 1 1 1 
u2 3/2 1 1 1 
u3 − 3/2 1 1 
u4 − 3/2 3/2 1 

Table 2. Gain ui depends on the actual number of zeros of the 
high-pass filter, unless we fix less or equal number of zeros of the 
low-pass filter. 

Table 2 shows that if the number of zeros of the LP filter 
(f=Nyquist) is less or equal to the number of zeros of the HP filter 
(f=0), gains ui equal 1 for all i=1−4. Thus if the number of fixed 
gains ui does not exceed the number of fixed gains pi we have 
“independent” vanishing moments. Moreover, they do not depend 
on the remaining free parameters! If we need more zeros for the LP 
filter, we can simply swap the positions of HP and LP filter by 
reversing signs of all parameters p and u.  

Figure 7. Adaptive wavelet filter bank (analysis part) with 2+2 
fixed vanishing moments and 3+3 free parameters. 

3 ADAPTATION CRITERION AND RESULTS 
3.1 Tuning of the filter properties 

In this section we discuss a realization with 2 vanishing moments 
fixed on both P and U side and only one free predictor parameter. 
In other words: p1 = u1 = 1 and p2 is being modified. For the 
simplicity, all other coefficients are set to zero. Corresponding high 
pass frequency responses for  p1 = u1 = 1 and p2 = {−10, −1, 0, 1, 2, 
10} are shown in Figure 8.  

With p1 = 1 and p2 = 0 we obtain linear 2-D interpolating predictor 
P2. Corresponding high pass filter H(z1, z2) has two vanishing 
moments at z1 = z2 = 1. With p2 = 1 four vanishing moments are 
obtained, making transfer function H(z1, z2) more flat around 
z1 = z2 = 1.. 

  

  

  
Figure 8. Frequency responses of the adaptive two-dimensional 
HP filter for different values of parameter p2. From left to right, top 
to bottom: p2 = {−10, −1, 0, 1, 2, 10}. Middle row (p2=0, 1) 
corresponds to fixed wavelets with 2 and 4 vanishing moments. 
Parameter values outside [0, 1] interval cause additional zeros of 
the response forming nearly rectangular “ditches”. 

If parameter p2 > 1 high pass 
filter frequency response  

( )21 , ωω jj eeH   

introduces new zeros outside 
the origin: a surrounding 
“ditch” that widens for larger 
p2  into a diamond shape up 
to the limit |ω1±ω2|=π (see: 

bottom of Figure 9). If parameter p2 is set to large negative values, 
frequency response begins to have zero “ditches” on the opposite 
side: near high frequency corners (see Figure 8 and Figure 9). 
High pass filter turns to a kind of band pass, and a problem with 
convergence appears (Figure 10). 

Positive values of p1 are good candidates for achieving desired HP 
frequency response: zeros on the lower part of the frequency plane 
can be adjusted to cancel large low-frequency components of the 
analyzed signal. But, large positive or negative values widen the 
energetic frame bounds of the transform, thus making filter bank 
very far from unitary. Moreover, limit functions do not necessarily 
converge. In practice, the region of acceptable parameter values is 
bounded. Limit wavelet functions for several values of parameter 
p1 are shown in Figure 10. 

We applied the adaptive wavelet filter bank to a synthetic image X 
composed of 2 horizontal sine waves of different frequencies. If we 
set p2 to two appropriate values in areas corresponding to different 
sine frequencies, decomposition is near optimal. Almost 
everywhere wavelet coefficients are turned to zero (Figure 11).  
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The question is: Is there a method to find appropriate filter 
parameters automatically? The complete answer is left for future 
research. 

We used a one-dimensional RLS adaptation algorithm, using a 
“snake-like” collection of pixels for 2-D to 1-D mapping (Figure 
11). The adaptation criterion follows the frequency of the analyzed 
signal, trying to turn detail coefficients to zero after the adaptation. 
Wavelet functions change at each step of decomposition, 
somewhere “in between” of those shown in Figure 10, so the good 
regularity properties remain. 
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Figure 9. Zero locations in frequency responses of the adaptive 
two-dimensional HP filter for different values of parameter p2. 
Top: negative values of p2. Bottom: positive values of p2. 

 

 

 

 
 

 

 

 
 

 

 

 

Figure 10. Limit wavelet functions for different values of 
parameter p2. From left to right, top to bottom: 
p2 = {−10, −1, 0, 1, 2, 10}. Large parameter values such as 
|p2|=10 cause divergence. 

In general, we can reconstruct the analyzed image from wavelet 
coefficients plus information on filter parameters {pmn} and {ukl}. 
They are expected to be coded very efficiently. For 1-D adaptive 
wavelets [4] strictly causal adaptation criterions could be self-
reproduced on the reconstruction side, with no need for filter 
parameters to be separately transferred. Whenever one-dimensional 
adaptation algorithm is used the causality criterion for self-
reproduction still holds. Of course, such adaptation algorithm is far 
from optimal when applied to 2-D images. 
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Figure 11. Top left: analyzed image X composed from 2 
horizontal sine waves (ω1 = π/2, π/4). Top right: wavelet 
coefficients D for fixed predictor P4 (only central part is 
shown). Bottom left: wavelet coefficients D for adapted 
predictor: p2 has values 2 and 1.17. Bottom right: p2 as a 
result of 1-D adaptive RLS algorithm (λ = 0.85). 

4 Conclusion 
We give a novel realization of the two-dimensional nonseparable 
adaptive wavelet filter bank. Prediction and update filters are 
implemented as a ladder of filter sections, where each successive 
section brings the contribution of the higher order approximation. 
A set of filter parameters is fixed and determines the desired 
number of zero moments. Free parameters can change at each point 
of decomposition or reconstruction. We used the recursive least 
square error criterion, computed from wavelet coefficients. 
Adaptive filter bank is applied on a synthetic signal. Wavelet 
coefficients get close to what we expect to be an optimal 
representation of the analyzed signal. Described 2-D space variant 
wavelet filter bank is more suitable for analysis of non-stationary 
images then fixed banks. Proper choice of the adaptation algorithm 
is still a problem for future research.  
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