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Abstract

In this paper, we identify that the major source of error in
mobile device based speech recognition is the long silence
segment in the beginning and the end of the utterance, which
is most noise sensitive. While these segments are most
dynamic, they are often poorly modeled by HMM. To improve
the silence modeling could improve the overall performance of
the speech recognition systems. We propose in this paper to
dynamically adapt the silence model on the utterance level.
Using a multi-lingual database collected in car under a number
of driving conditions, we show a significant improvement in
speech recognition accuracy.

1. Introduction

The performance of speech recognition systems
degrades significantly when mismatched conditions
occur where the training samples and testing samples are
taken from different acoustical environments.
Sophisticated techniques including frond-end signal
processing and HMM models adaptations have been
proposed to compensate for the mismatches [2][3][4].
For the database collected in noisy environments, the
matched condition training and testing are often
preferred compared with situations where the
sophisticated noise reduction techniques are used to
reduce mismatches. But the matched conditions are
hard to obtain due to the difficulty of data collection and
diversity of changes in speakers and acoustical
environments. The speech recognitions for speech in
mobile environment are such a challenging task where
the noise is often introduced and acoustical environment
is dynamic, especially in car-driving conditions.
When acoustical environment changes, the silence
model or non-phoneme model needs most attention.
Firstly, duration modeling in silence can be seriously
deficient in the presence of long non-speech signal.
Unlike phonemes, whose durations in the utterances are,
in some degree, constrained by the physics of movement
of the vocal apparatus, there are no physical constraints
on the duration of a silence. Further more it is well
known that duration modeling in HMM is deficient.
Secondly, the silence part of the utterance is most noise
sensitive. Therefore, in this paper, we will focus on the
silence HMM model adaptation to improve the
recognition performance in noisy conditions.

HMM model adaptation techniques like Maximum a
Posteriori (MAP) estimation and Maximum likelihood
linear regression (MLLR), mostly used for speaker
adaptation, are less effective when the data is scarce, in
particular, in on-line situation [1][2]. Even HMM
adaptation with MLLR needs a number of adaptation
utterance [1]. The scarceness of data can leads to a
wrong or poor estimate of the linear transformation.
This shared transformation could then damage the
underlying structure of the whole acoustic space. It can
be worse for noisy speech under unsupervised situations.
In the same token, we can also view the global Cepstral
Mean Subtraction (CMS) technique as an on-line
adaptation technique, where the all means of the
Gaussian mixtures is adjusted based on the cepstral
means of the recognizing utterance.
In these adaptation schemes, all Gaussian mixtures in the
HMM models can be modified. We know that HMM
models with multi-mixture are typical setup to handle
the diversity of the speech data. In general, a greater
diversity in speakers and acoustical environments
requires more mixtures in HMM models. So speaker
dependent speech recognition generally outperforms the
speaker independent speech recognition with the same
HMM setup. In other words, to achieve the same
performance for both situations, HMM models with less
number of Gaussian distributions can be used. For each
particular utterance, we basically perform speaker
dependent recognition if we can adapt the model with
the on-line data. This implies that for each utterance
only limited number of mixture components affects the
outcome of score ranks. This leads us to propose to
update selected mixtures on-line.

In this paper, we will show that one of the major sources
of errors in mobile device based speech recognition is
the long and noise corrupted silence segment in the
beginning and the end of the utterance. While these
segments are most dynamic and are poorly modeled by
HMM, we propose to instantly adapt the silence model
on the utterance level. Using a multi-lingual database
collected in car under a number of driving conditions,
we show a significant improvement in speech
recognition accuracy



2. Multilingual Digit Database Collected in
Cars

2.1. Data collection

As a part of the AURORA project, Speech-dat Car
(SDC) digits database has been established for Italian,
Danish, German, Spanish and Finnish [5]. All sessions
have been recorded with native speakers using both a
close-talking (CT) microphone and a hands-free (HF)
microphone in cars under five different driving
conditions:

Driving condition Condition
0 km/h, engine on Quiet
40-60 km/h Low noise
40-60 km/h, window open Low noise
100-120 km/h High noise
100-120 km/h, music on High noise

The databases are organized into three different
matching conditions:

• Weakly mismatch condition (WM) where
training uses 70% of data from both HF and
CT microphones and testing uses the rest 30%
data from HF and CT microphones in all
driving conditions.

• Medium-mismatch condition (MM) where
training uses 70% of quiet and low noise data
from HF microphone and testing uses 30% of
high noise data from HF microphone only.

• High-mismatch condition (HM) where training
takes 70% of all conditions from CT
microphone and testing uses 30% of low noise
and high noise data from HF microphone.

For each test, speakers are split into separate training
and test sets so that 70% of the speakers are in the
training set and the rest in the test set.

2.2. Feature generation

A cepstral analysis scheme recommended in the Aurora
WI007 front-end is performed [5]. Speech  signal offset
is first compensated with a notch filtering operation. We
use a frame length of 25ms speech with a Hamming
window and the frame advance of 10 ms. The  pre-
emphasis factor of 0.97 is applied.  FFT based Mel
frequency filter-bank analysis produces 23 frequency
bands in the range from 64 Hz up to half of the sampling
frequency. Finally all 13 Mel frequency cepstral
coefficients (MFCCs) are generated. The reference
baseline results and our experiments are based on the
same features.

2.3. Acoustic modeling.

In the Aurora project specification, the HMM models
are whole word digit model and their topologies are the
same for the five languages. The silence HMM model
has three emitting states and each state contains a
mixture of six Gaussian distributions. The pause HMM
model has a single state that is tied to the middle state of
the silence model. Each digit HMM model has sixteen
states and each state contains a mixture of three
Gaussian distributions. The training procedure is the
same for all five languages. For testing, the recognition
grammar and language model penalty is also the same
for all five digit-recognition tasks.

3. End-silence segment removal with forced
alignment

It is observed that the silence removal can significantly
improve the speech recognition performance. That is
why good end-pointing algorithm plays an important
role in real life speech recognitions. We intend to show
here significant accuracy improvement can be achieved
by adequately delete silences.

For the purpose of producing the accurate alignment,
five sets of HMM models are trained with data recorded
from the closed-talking microphone so that high
recognition accuracy maintains. The alignment then is
performed on the test data recorded also from close-
talking microphones. The alignment information is used
for removing the silence segments in the beginning and
end of the corresponding utterances recorded in the
hands-free and close-talking modes. For silence
segments in the beginning of the utterance, we removed
the silence frames up to the last five frames. For silence
segments in the end of the utterance, we keep only five
frames in the beginning of a silence segment and
remove the rest. As a result, we then have prepared a
version of testing database without ending-silence
segments. We follow the same procedure for training
and testing as proposed in [5]. We indeed achieved the
performance improvement as shown in Table 1 and 2.
The weighed average error rate reduction is across five
languages is 17.31%.

Table 1. Performance of standard AURORA project
setup with ending-silence deletion.

Training Mode Seen Databases
Unseen

Databases Average

Italian Finnish SpanishGerman Danish

Weakly Mismatched 94.90 93.23 88.28 91.02 84.62 90.41

Medium Mismatch 84.38 82.15 76.93 78.70 63.41 77.11

High Mismatch 55.07 48.59 51.46 74.56 48.21 55.58

0.4W+0.35M+0.25H 81.26 78.19 75.10 82.59 68.09 77.05



Table 2: Performance improvement over the baseline
results due to silence segment reduction.

Training Mode Seen Databases
Unseen

Databases Average

Italian Finnish Spanish German Danish

Weakly Mismatched 19.81 28.51 10.87 4.67 22.32 17.24

Medium Mismatch 13.13 35.09 12.15 -1.72 25.07 16.74

High Mismatch 25.32 26.19 15.98 1.09 22.62 18.24

0.4W+0.35M+0.25H 18.85 30.23 12.60 1.54 23.36 17.31

4. Noise model adaptation

As we have demonstrated in the section above, noise
segments both in the beginning and the end can be a
major source of recognition degradation for telephone-
like speech. Intra-word silences can have similar adverse
effects on recognition results. As we have states in the
above that for each utterance only limited number of
mixture components affects the outcome of score ranks.
Minor degradation incurs when mixture calculation
takes the value of the maximum of the mixture
components. This leads us to propose to update selected
mixtures on-line. If we can select in some way in
advance those mixture components that participate the
score ranking operation, we can only update those
components while maintain other components
unchanged. We propose here the reduced model
adaptation. The reduced model contains less mixtures
and adaptation will be more robust. This adaptation will
take place in the decoding process.
Procedure for reduced model adaptation

1) Calculate the average of the first n frames as:
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2) For each state of the silence model, identify the
target mixture component as:

( )
( , , )

j gaussians
il ij s ij ijN MMaxµ µ

∈
= Σ

3) Update selected mean as:
(1 ) * *il il Msuα αµ <= − +

4) Restore the original mean vector ilµ for the

next utterance.

As we can see, this method produce very little overhead
in terms of both CPU and memory consumption.

5. Experiment Results

5.1. Performance improvement as a function of updating
weight.

In this experiment, we test the influence of the updating
weight factor α on the speech recognition performance.
The number of frames used to obtain mean is fixed as
10. Figure 1 and Figure 2 show the error rate reduction
for five languages as a function of α.
We see the performance is stabilized around a α value of
0.9. The German and Danish languages listed as unseen
database, are shown less improvement. One of the
possible reasons could be that HMM structure and
recognition setup was experimentally chosen based on
the other three languages. Much more deletion errors
than insertion errors are seen in these two databases.
Figure 1: Error rate reduction as a function of updating
factor for five languages.
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Figure 2: Average error rate reduction among five
languages in three matching conditions. HM is on the top,
WM on the bottom, and the middle line is for the MM
condition.
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5.2. Update all the means in the silence model.

In this test, we update all the silence means. We found
that when all mixture is update with the new mean, the
improvement is significantly lower, for example, in the
case of alpha = 0.7, error rate reduction decreased from
averaged 14.82% to a 11.14 %.

5.3. Silence model adaptation after Cepstral Mean
subtraction

We also test the situation when cepstral mean
subtraction is used. Because the initial conditions for
calculating the dynamic cepstral coefficients are always
problematic, in this experiment, we also show the
difference in the performance between updating all 39
cepstral coefficients and just updating the 13 static

cepstral coefficients. However, the difference is just
marginal. We can see from Table 3 and 4 the strong
contributions from CMS techniques and reduce model
adaptation.

Table 3: Error rate reduction with silence model
adaptation and CMS. (39 cepstral coefficients)

Training Mode Seen Databases
Unseen

Databases Average

Italian Finnish Spanish German Danish

Weakly Mismatch 14.78 41.71 19.09 9.84 23.28 21.74

Medium Mismatch 28.92 52.00 40.56 11.22 13.07 29.15

High Mismatch 47.17 52.82 46.11 32.74 19.68 39.70

0.4W+0.35M+0.25H 27.83 48.09 33.36 16.05 18.81 28.83

Table 4: Error rate reduction with silence model
adaptation and CMS. (13 cepstral coefficients)

Training Mode Seen Databases
Unseen

Databases Average

Italian Finnish Spanish German Danish

Weakly Mismatch 16.82 42.34 19.39 10.27 24.75 22.72

Medium Mismatch 28.92 51.75 40.25 10.51 16.81 29.65

High Mismatch 45.86 52.06 46.11 30.40 20.17 38.92

0.4W+0.35M+0.25H 28.32 48.06 33.37 15.39 20.83 29.19

6. Conclusions

We propose to adapt the selected mixtures in the silence
model to improve the robustness of speech recognition
in noisy environment. This approach shows the biggest
error rate reduction in highly mismatch testing
conditions. Compared with other noise reduction
techniques, the reduced silence model adaptation is
more cost-effective.
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