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ABSTRACT

This communication addresses the general problem of
non-stationary signal interpretation. We show that the
Time-Frequency Representation segmentation task can
be assimilated to a mixture densities parameter esti-
mation when performed in a statistical Features Space.
Two models of mixture are discussed, setting the num-
ber of features to be extracted. We propose to resolve
moments equations to characterize the energy evolution
of the signal components in the Time-Frequency plane.
This provides quantitative measures associated to the
components which can be used in a decision procedure.

1 Introduction

Time-Frequency Representations (TFR) are natural
tools for the interpretation of a non-stationary signal
because they highlight the temporal evolution of the
signal spectral content. Many methods can be found
in the literature. For instance, Altes extends in [1] the
signal detection theory to the Time-Frequency domain.
Prior to the decision task, Baraniuk and Jones propose
to adapt the TFR according to the signal [2]. Davy and
Doncarli realizes the classification by means of a fitted
TFR kernel in [3].
All of these methods require a priori knowledge on the
signal. Our purpose is to develop a procedure of inter-
pretation taking into account the statistical properties
of the TFR only, according to a general model of sig-
nal. It consists in detecting TFR structures containing
non-stationary components energy that we call spectral
patterns via a segmentation procedure. We adopt a lo-
cal approach, perceptible to local non-stationarities, by
extracting features from sets of coefficients defined by a
gliding cell running over the whole TFR. The TFR co-
efficients are then represented in terms of their features
in the so-called Features Space (FS). A segmentation
procedure lead by the statistical properties of the TFR
takes place in this new space. Describing the FS struc-
ture by extracting pertinent parameters can provide the
necessary information for the interpretation step.
In this paper we focus on a particular TFR: the spec-
trogram. We show in section 2 that spectrogram distri-

bution law can be seen as a mixture density. This leads
to construct the segmentation procedure in section 3.
In section 4 and 5, we describe how the segmentation
algorithm behaves when respectively two and three sta-
tistical features chosen according to the mixture model
are locally extracted. In final section we propose a first
method to characterize the spectral patterns content in
terms of the chosen features.

2 Mixture densities formulation

Statistical properties of the Spectrogram are derived
from the huge knowledge addressing to periodogram.
A complete study of the periodogram, defined as the
square modulus of the Fourier transform of a signal, can
be found in [9] when the analyzed signal is a white Gaus-
sian process. The case of a stationary process is also
derived in [8] but with a matricial approach. This the-
ory broaden the case of a non-stationary time-dependent
discrete signal s[n] defined as:

s[n] = d[n] + b[n], (1)

where b[n] is a white Gaussian process of zero-mean and
unknown variance σ2. Signal d[n] is a deterministic sig-
nal which components, represented by spectral patterns
in the TF plane, are to be characterized. The spectro-
gram S[n, k], defined as the square modulus of the short
time Fourier transform of the signal computed over a
Nw-points window w[n]:

S[n, k] =
1

Nw

∣∣∣∣∣
Nw∑

i=1

w[i− n]s[i]e−i2π ik
Nw

∣∣∣∣∣

2

, (2)

where n and k are the time and frequency indices, has
non-central χ2 distribution with two degrees of freedom,
proportionality parameter σ2

2 and non-centrality param-
eter ncp = D[n, k]:

fncp(x) = fχ2(2,ncp,σ2/2)(x). (3)

The non-centrality parameter is the spectrogram coef-
ficient of the deterministic signal alone. Spectrogram
coefficients which do not contain deterministic signal en-
ergy have a null ncp and can be distinguished as having
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a central χ2 distribution.
When the analyzed signal is a deterministic signal em-
bedded in a white Gaussian noise, the spectrogram dis-
tribution is a mixture of central and non-central χ2 dis-
tributions. The segmentation problem can then be reori-
ented towards the estimation of the mixture parameters
σ2 and D[n, k].

3 Spectrogram Segmentation

We propose to identify the deterministic components of
the signal in the Time-Frequency space by discriminat-
ing coefficients of different non-centrality parameters.
For this purpose features are extracted from local sets
of spectrogram coefficients, able to describe the random
behavior of their samples in the Features Space (FS).

3.1 Local Mixture Densities
Define a gliding cell C of N spectrogram coefficients
running over the whole time-frequency plane. The dis-
tribution f(x) of the parent random variable associated
to C is a mixture of N χ2 densities fD[n,k](x) defined
by (3):

f(x) =
1
N

∑

(n,k)∈C

fD[n,k](x), (4)

with N unknown parameters D[n, k]. The method con-
sists in associating characteristic features to the central
point of each cell C. Assuming ergodicity, we define
the features as statistics of the spectrogram coefficients
inside C:

mq =
1
N

∑

(n,k)∈C

S[n, k]q, (5)

in order to estimate the qth moments to zero µq of the
parent variable of C. The first and second order mo-
ments of mq are expressed in terms of the µq’s:

E{mq} = µq, (6a)

V ar{mq} =
1
N

(µ2q − µ2
q). (6b)

These expressions provide a description of the FS in
terms of the point location and dispersion.
For instance, we call noise cell a cell of the spectrogram
containing only noise energy. Its parent variable is a
χ2(2, 0, σ2

2 ) variable. Its qth moment to zero, written
µb

q, is:
µb

q = q!(σ2)q. (7)

Equations (6) and (7) show that noise cells aggregate
in the FS around point (µb

1, µ
b
2, ..., µ

b
q) with a disper-

sion along the qth axis given by V ar{mb
q} = ((2q!) −

(q!)2)(σ2)2q/N .
The behavior of cells which contain deterministic com-
ponents coefficients1 also depends on the non-null non-

1We call deterministic components coefficients the spectrogram
coefficients which contain the deterministic component and the
noise contributions in opposition to noise coefficient which contain
the only noise contributions.

centrality parameters. We assume hypothesis on their
variations in order to reduce the number of unknown
parameters in equation (4). These hypothesis define the
mixture model of the cell which leads to the segmenta-
tion procedure. We derive two cases in sections 4 and 5.

3.2 Region Growing Algorithm
The segmentation procedure we define takes into ac-
count the structure of the FS described by equations (6).
A complete description of the algorithm is proposed in
[6] and [5]. It is a region growing algorithm which con-
sists in determinating in the FS spectrogram coefficients
called seeds which are characteristic of a spectral pat-
tern. A label is associated to the seeds. These seeds con-
taminate their neighbors by associating the same label.
Our approach ensures that coefficients with same label
present similar properties regarding to the extracted fea-
tures.
Coefficients with the highest distance to the noise clus-
ter are determined as seeds. In the FS, the distance
di,j between coefficients S(ni, ki) and S(nj , kj) is the
Mahalanobis distance defined by [4]:

d2
i,j = (mi

1,m
i
2, ..., m

i
q)Σ

−1(mj
1, m

j
2, ...,m

j
q)

T , (8)

where mi
q is the qth features extracted from the cell cen-

tered on (ni, ki), .T stands for the matrix transposition
and Σ is the diagonal matrix of the features variances.
This distance takes into account the different variabili-
ties of the FS axis. Note also that parameter σ2 is not
considered as a mixture parameter but is iteratively es-
timated by maximum likelihood estimator of a central
χ2 distribution, assuming that each unlabeled coefficient
is a noise coefficient. Under this assumption the white
Gaussian noise variance σ2 is efficiently estimated by
the empirical mean of m1 [5]. The segmentation stops
when the likelihood of the estimated central χ2 con-
verges. The two next sections illustrate the algorithm
with mixture models of respectively two and three un-
known characteristic parameters.

4 Bi-dimensional Features Space

The segmentation purpose is to distinguish between co-
efficients having central distribution, that is noise coeffi-
cients, and non-central coefficients, that is deterministic
components coefficients. The dimension of the FS on
which is processed the segmentation is the number of
unknown parameters of the mixture model. In this sec-
tion we describe the bi-dimensional FS (m1,m2).
Let consider that C is filled of P deterministic compo-
nent coefficients and (N − P ) noise coefficients. The
local approach allows one to assume that the P coeffi-
cients have the same ncp we define as equal to the mean
Ms of the P non-null ncp’s in the cell:

Ms =
1
P

∑

(n,k)∈C

D[n, k]. (9)
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The distribution f(x) of equation (4) is then considered
as the mixture of a central distribution f0(x) and a non-
central distribution fMs

(x):

f(x) = (1− p)f0(x) + pfMs
(x), (10)

with p = P
N . Feature mq is an unbiased estimator of µq

of expression [6], [7]:

µq = q!(σ2)q

[
1 + p

q∑

i=1

Ci
q

1
i!

rq

]
. (11)

where r = Ms/σ2 can be interpreted as a local SNR.
The algorithm is applied to segment the spectrogram
of figure 1(a). The analyzed signal is a sum of three
nearby linear chirps which spectral pattern presents
sharp edges, and of eleven truncated sines presenting
smoother energy variations. The additive white Gaus-
sian noise is zero-mean and of variance σ2 = 10.42. Fig-
ure 1(b) shows that the algorithm detects two classes
corresponding to spectral patterns of different energy
behavior and a noise class. One can see with figure 1(c)
that the clusters corresponding to the two classes over-
lap in the FS. The region growing approach allows to
separate the clusters by introducing a neighboring con-
straint in the TFR. The shapes of the clusters depend
on the local evolution of the mixture parameters. The
noise cluster is centered near the origin. Fitting cluster
i to an order 2 polynomial regi permits to quantify this
evolution and to characterize the spectral patterns by
assuming: µ2 = regi(µ1). Figure 1(d) shows the total
least-square regressions [4], reg1 and reg2 of clusters 1
and 2 . The polynomial regression of cluster 2 presents a
smallest derivative near the noise mode (µb

1, µ
b
2) which is

characteristic of a widely spread and smoothed pattern.
Note to conclude that the iterative procedure of seg-
mentation provides a final estimation of the noise power
σ̂2 = 10.53.

5 Three-dimensional Features Space

The mixture model presented in the previous section
does not take into account the dispersion of the non-
centrality parameters inside the cell. In this section, we
propose to introduce a third mixture parameter to make
the model more accurate.
Let approximate now the P/2 lowest non-centrality pa-
rameters of the cell by their mean Ms− and the P/2
other by their mean Ms+. The mixture model is then
a mixture of the central distribution f0(x) and of two
non-central distributions fMs−(x) and fMs+(x):

f(x) = (1− p)f0(x)

+
p

2
(fMs−(x) + fMs+(x)). (12)

Following this model, moment µq of the parent variable
depends on three mixture parameters p, r− = Ms−/σ2
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Figure 1: Sum of seven truncated sines and three linear
chirps. The spectrogram (a) of 129× 197 coefficients is
segmented (b) in three regions with labels ranging from
0 to 2. Features are extracted from 5×7 coefficients cells.
In figure (c) is presented the observed FS (m1,m2) with
cluster 1 (o) and 2 (+). Figure (d) is the corresponding
theoretical FS (dotted lines) with the polynomial regres-
sions reg1 (plain line) and reg2 (dashed line). Figure (e)
is the three-dimensional FS with polynomial regressions
of the clusters and their projections to the three sub-
spaces of the two polynomial regressions.

and r+ = Ms+/σ2:

µq = q!(σ2)q

[
1 +

p

2

q∑

i=1

Ci
q

1
i!

(rq
− + rq

+)

]
. (13)

The segmentation result is similar to the one obtained
with the bi-dimensional FS but the spectral patterns
shapes are now described by three parameters. Polyno-
mial regressions of order two and three are respectively
performed in subspaces (m1, m2) and (m1,m3) to fit
the clusters. In next section we propose a method to
estimate the mixture parameters from the polynomial
regressions.
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Figure 2: Dolphin whistle. The spectrogram (a) is seg-
mented in two classes (b). First one is composed of
three narrow spectral patterns of high energy density.
Label 2 is associated to lower energy patterns. The cell
contains 3 × 5 points. In figure (c) a theoretical sam-
ple of points (µ1(p, r), µ2(p, r)) with varying p and r (o)
is superimposed to the Features extracted from class 1
patterns (+) and to the total least squares polynomial
regression of this cluster (plain line). Figure (d) shows
the evolution of the estimated parameters p and r.

6 Equating the moments

Let focus on the bi-dimensional FS (m1, m2). The poly-
nomial regression can be considered as an estimation of
the average evolution of moments µ1 and µ2 in terms of
p and r. Equation (11) with q = 1 and q = 2 gives:

µ1 = σ2(1 + pr), (14a)

µ2 = reg(µ1) = 2(σ2)2(1 + 2pr +
p

2
r2). (14b)

Equating this system of moment equations provides an
estimation of the average evolution of p and r and thus
characterizes the energy evolution of the related cluster.
Let consider the spectrogram of an acoustic recording of
dolphin whistles presented in figure 2(a). The algorithm
discriminates two classes of whistles spectral patterns in
terms of their energy level mainly, and a noise class, as
can be seen on figure 2(b). Let focus on the higher en-
ergy class. It is composed of three different thick spec-
tral patterns with sharp edges. Figure 2(c) shows the
theoretical grid (µ1, µ2) superimposed to the polynomial
regression µ2 = reg(µ1). The variations of parameters p
and r presented in figure 2(d) are estimated by equating
system of equations (14). It shows that the local SNR
r increases rapidly while the proportion p of determin-
istic components increases. This is characteristic of a

sharp edge spectral pattern. Moreover p is inferior to
0.7 which shows that these patterns are thick regarding
to the cell size.

7 Conclusion

This paper describes a new method for non-stationary
signal interpretation via its spectrogram segmentation.
It is based on a mixture density modeling of the spec-
trogram coefficients distribution laws. This modeling al-
lows to describe theoretically a Features Space on which
is projected the spectrogram to perform the segmenta-
tion. We show how a moment method leads to estimate
the mixture parameters associated to the segmented
patterns in a post-segmentation processing. The pro-
cedure provides an estimation of the embedding noise
power and a characterization of the deterministic com-
ponents of the signal, whatever the signal is (frequency
or amplitude modulated, narrow-band or wide-band,
multicomponent signal). An example is given with an
acoustic recording of a dolphin whistle, modeling the
spectrogram coefficients distribution by a mixture of
two distributions. Works are in progress to extend the
post-processing method to Features Space of higher di-
mensions and obtain a more accurate description of the
patterns energy evolution.
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