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ABSTRACT

This paper describes a novel method for segregating concur-
rent monaural sounds. In a real environment, there are many
types of sounds, such as periodic sound, aperiodic sound,
impulsive sound and so on, and several sounds usually oc-
cur simultaneously. In order to recognize the sounds, it is
necessary to be able to model such various type of sounds
and segregate the concurrent sounds. The proposed method
adopts a waveform generation model consisting of an Auto-
Regressive process and a Hidden Markov Model as a tem-
plate model and achieves segregation of monaural concurrent
sounds based on the mixed AR-HMMs. Experiments were
conducted to confirm the feasibility of the method using ten
types of non-speech sounds. The experimental results indi-
cate that the proposed method is effective for various types
of sounds.

1 Introduction

In a real environment, there are many kinds of sounds other
than speech and we recognize the environment by both visual
and audio cues. However, studies dealing with recognition
of non-speech sounds can be rarely seen in contrast with
speech recognition. Realizing the ability to recognize the
environment by hearing in an engineering sense would be
especially helpful in enabling hearing-impaired persons to
recognize the environment.

Real environment includes many types of sounds, such as
periodic sound, aperiodic sound, impulsive sound and so on,
and several sounds usually occur simultaneously. Thus, it is
necessary to be able to model such various types of sounds
and segregate the concurrent sounds in order to recognize
the environment by hearing. In recent years, microphone
array systems have been investigated to segregate concurrent
sounds[1]. However, microphone array systems need to be
large in order to achieve more accurate segregation of sounds
in near-field. This sometimes causes difficulties, such as the
case for hearing-impaired people to carry the system, for
example. This paper thus focuses on segregation of monaural
recorded sounds.

A template-matching-based method is one approach to re-
solving the problem. For instance, a method based on match-
ing between an input waveform and a template waveform of
each sound stored in advance has been proposed[2]. This
method introduces template waveform adaptation. Since
each sound source has several variable elements, such as
the gain and/or phase, the observed waveforms may differ,
even if the waveforms are obtained from the same sound
source. The template waveform therefore needs adaptation
to those variable elements. The introduced method achieves
the adaptation by applying a linear filter to a raw template

waveform. However, for a periodic sound source, this makes
it difficult to adapt the pitch of the raw template waveform
to that of the observed waveform.

In order to overcome this difficulty, this paper proposes a
novel segregation method that adopts a waveform generation
model for each sound source as the template model, instead
of the raw waveform. The proposed template model is a
kind of source-filter model consisting of an Auto-Regressive
(AR) process for the articulatory filter and a Hidden Markov
Model (HMM) for the excitation source. We hereafter call
this model as AR-HMM. The AR-HMM can represent var-
ious types of sound sources, such as periodic, aperiodic or
impulsive sounds, by means of appropriately designing a
network topology of the HMM. In the AR-HMM, the ex-
citation source is separated from the articulatory filter. The
gain and phase of the template model can thus easily be
adapted to the desired values by adjusting the output gain
and the state transition of the HMM. The proposed method
segregates monaural concurrent sounds based on the mixed
AR-HMMs, and is therefore applicable to various types of
sounds. This paper considers the case in which only the gain
and phase of the excitation source for each template model
can change, i.e., the AR coefficients in each template model
are fixed. The sounds corresponding to these conditions are
collision sounds, ringing sound of a bell-alarm clock, vowel
sounds and so on.

2 Template Model Based on AR-HMM

An Auto-Regressive (AR) process can describe the passive
oscillation after an external power excites the object, such
as collision sounds caused by knocking on a door, beat-
ing a drum and ringing a bell-alarm clock. Thus these
sound sources can be adequately represented by a source-
filter model consisting of an excitation source and an AR
process. A speech signal also corresponds to this kind of
sound source since the speech signal is generated by inject-
ing a glottal volume flow into the vocal tract. In the pro-
posed source-filter model, a Hidden Markov Model (HMM)
and time-varying output gain are adopted as an excitation
source in order to represent such various types of sounds.
We call this source-filter model as an AR-HMM.

The output probability distribution of each node of the
excitation source HMM is assumed to be a single normal dis-
tribution. Figure 1 shows examples of the AR-HMM. The
AR-HMM at the top of the figure represents a stationary
noise source. If the prediction order is equal to zero, the
model represents a white Gaussian noise source. The nodes
of the second AR-HMM are concatenated in a ring state, so
the state transition occurs in order. That’s why this type
of AR-HMM can be used to represent periodic and non-



stationary sound sources. An ergodic HMM as shown in the
bottom can be used to represent an aperiodic sound source.
The numbers of the nodes and the prediction order are de-
termined according to the sound source. Usually, an Akaike
Information Criterion (AIC) is employed to determine the
model[5]. The AR-HMM parameters are estimated from a
sample signal of the sound source so that the likelihood of
the parameters is maximized. The details of the estimation
algorithm are described in [3, 4].
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Figure 1: Examples of AR-HMM

3 Gain-adapted AR-HMM Decomposition

3.1 Mixture Model of Concurrent Sounds
Figure 2 shows a model of M mixed sound sources. In this
model, the parameters, except the time-varying gain of each
AR-HMM, have been estimated by the parameter estimation
algorithm[3, 4]. The proposed segregation algorithm consists
of the following processes.

1. Adaptively estimate each time-varying gain.

2. Estimate the state transition of each HMM.

3. Segregate a mixture sound based on the adapted AR-
HMM.

Although the processes adapting the mixed AR-HMMs are
similar to those of the HMM decomposition method[6], the
proposed method needs to treat a process adapting time-
varying gains. Moreover, since the mixture model output is
represented as a summation of all the excitation sources fol-
lowed by the AR processes, the proposed model needs to also
take into account the effects of the AR processes in estimat-
ing the state transition. We call this segregation algorithm
as a Gain-Adapted AR-HMM (GA-ARHMM) decomposition
method.

Like the HMM decomposition method, the GA-ARHMM
decomposition method searches for the optimum transition
sequence based on a trellis diagram with a dimension of (M+
1) and resulting by combining a time-axis and a cartesian
product Σ = S1 ⊗ · · · ⊗ SM , where Sm denotes a set of
each HMM’s nodes. Each mixture state is represented by
s = [s1, · · · , sM ] ∈ Σ, where sm ∈ Sm.

3.2 Eliminating Effects of the AR Processes
In order to estimate the state transition, the effects of AR
processes need to be eliminated from an observed mixture
sound y(t). This is achieved as follows. A sound source
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Figure 2: A mixture model of concurrent sounds

signal xm(t) of the mth AR-HMM is generated according to

xm(t) =

Pm∑
k=1

am(k)xm(t − k) + gm(t)em(t) (1)

where Pm is a prediction order; am(k), k = 1, · · · , Pm are
AR coefficients; gm(t) is a time-varying gain; and em(t) is
an excitation source. A mixture sound signal is given by

y(t) =

M∑
m=1

Pm∑
k=1

am(k)xm(t − k) +

M∑
m=1

gm(t)em(t) (2)

Since the first term on the right side of the equation con-
tains the auto-regressive components of all the AR-HMMs,
the state transition cannot be estimated directly from the
mixture sound signal like the HMM decomposition method
does. Hence, we focus on the residual resulting by subtract-
ing the auto-regressive components from the mixture sound
signal. However, the sound signals xm(t),m = 1, · · · ,M in
(2) are the original signals before being mixed and are ac-
tually unknown. The segregated signals are therefore used
to calculate the residual. A segregated signal of each sound
source exists along a path reaching each mixture state. Let
xm(s, t) denote the segregated signal of the mth sound source
in mixture state s ∈ Σ at time t. We introduce Ψ(s, t) ∈ Σ
as a back tracer representing the mixture state from which
the state transition to the mixture state s at time t occurred.
The state transition sequence s∗(s, t, t′), t′ = 0, · · · , t reach-
ing a mixture state s at time t is given by

s∗(s, t, t) = s
for t′ = t − 1, t − 2, · · · , 0

s∗(s, t, t′) = Ψ(s∗(s, t, t′ + 1), t + 1).
(3)

The segregated signal x∗
m(s, t, t′), t′ = 0, · · · , t of the mth

sound source obtained along the path reaching a mixture
state s at time t is given by

x∗
m(s, t, t′) = xm(s∗(s, t, t′), t′). (4)

By using (2),(4), the residual r(s, t) evaluated in a mixture
state s at time t is given by

r(s, t) = y(t) −
M∑

m=1

Pm∑
k=1

am(k)x∗
m(s, t, t − k). (5)

If the signals are segregated correctly, that is, x∗
m(s, t, t′) ≈

xm(t′), the residual can be represented as

r(s, t) ≈
M∑

m=1

gm(t)em(t). (6)



From this, it is obvious that the residual is free from the ef-
fects of the auto-regressive processes. If we assume that all
the gains are 1.0, the residual becomes equal to a summa-
tion of outputs directly from all the HMMs. By focusing on
the residual, we can apply the HMM decomposition method
to estimating the state transition. However, the gain as-
sumption is generally not adequate, so we need to estimate
the time-varying gains in the residual. The next section de-
scribes an adaptive estimation of the gains.

3.3 Adaptive Estimation of Time-varying
Gains

First, we summarize the conditions of the time-varying gains
as follows.

1. The phase of each excitation source is not affected by
the time-varying gain.

2. The gain varies slowly in comparison with the speed of
state transition of the excitation source HMM.

The first gain condition can be satisfied by restricting the
sign of each gain to a positive sign. That is,

gm(s, t) > 0, for ∀m, s, t. (7)

In the following, we describe the adaptive estimation of
the time-varying gain. In a state transition from s at time
t to s′ of the next time, the output distribution of the
node emitting an excitation source in the mth HMM is
given by N(µm(sm), σ2

m(sm)). As seen in (6), the residual
r(s, t) is represented by a linear combination of excitation
sources multiplied by the gains. The occurrence probability
of the residual r conditioned on the gains taking values of
gm,m = 1, · · · ,M is thus given by

Os(r|g1, · · · , gM ) =
1√

2π
∑M

m=1
g2

mσ2
m(sm)

×

exp

{
− (r −∑M

m=1
gmµm(sm))2

2
∑M

m=1
g2

mσ2
m(sm)

}
. (8)

From another point of view, the equation can be regarded
as the likelihood that the evaluated residual was generated
by the gains. Due to condition (7), the domain of the likeli-
hood function is restricted to the first quadrant, in which the
likelihood function is a convex function with respect to the
gain. Hence, the optimal gains maximizing the likelihood
can be determined. However, since the optimization of the
gains at each time causes discontinuities in the time series of
the estimated gains, the second condition for the gains is not
satisfied. Instead, we employ an adaptive estimation algo-
rithm based on the gradient of the likelihood function. Since
the adaptation process is achieved by slightly modifying each
gain at each time, the rapid variations in the time series of
the estimated gains should be avoided. The gains estimated
along the path corresponding to actual state transitions of
the HMMs are expected to converge to the maximum likeli-
hood estimates. The gradient of the logarithmic likelihood
with respect to a gain gl is given by

∂ lnOs

∂gl
=

{r − ∑M

m=1
gmµm(sm)}µl(sl) − glσ

2
l (sl)∑M

m=1
g2

mσ2
m(sm)

+
{r − ∑M

m=1
gmµm(sm)}2glσ

2
l (sl)

{∑M

m=1
g2

mσ2
m(sm)}

, (9)

and each gain is updated by

gl(s, t) = α
∂

∂gl
ln Os(r|g1(s

∗, t − 1), · · · , gM (s∗, t − 1)) (10)

+gl(s
∗, t − 1), l = 1, · · · ,M

where α is the step size and s∗ = Ψ(s, t).

3.4 Selecting the Most Probable Path
Using the estimated gains gm(s, t),m = 1, · · · , M for each
mixture state s ∈ Σ, the occurrence probability of the resid-
ual is given by

Os(r|g1(s, t), · · · , gM (s, t)). (11)

The transition probability is given by

T (s, s′) =

M∏
m=1

bm(sm, s′m) (12)

where bm(s, s′) presents a transition probability from a state
s to a state s′. Thus, the most probable path of transition
to a mixture state s′ is selected by means of the following
equation.

Ψ(s′, t + 1) = arg max
s

P (s, t)Os(r)T (s, s′) (13)

where P (s, t) denotes the maximum probability for a state
transition sequence ending in s at time t. The probability of
the selected path is given by

P (s′, t + 1) = max
s

P (s, t)Os(r)T (s, s′). (14)

3.5 Decomposition of a Residual
The residual is decomposed at each time in order to segregate
a mixture sound based on (6), where the estimated gains
gm(s, t) are used instead of the actual gains gm(t). Hereafter,
let qm denote an excitation source multiplied by the gain as
qm = gm(s, t)em(t), which is a random variable conforming
to the normal distribution given by

Q′
s(qm) =

1√
2πσ2

qm

exp

{
− (qm − µqm )2

2σ2
qm

}
(15)

where s = Ψ(s′, t + 1), µqm = gm(s, t)µm(sm) and σ2
qm =

g2
m(s, t)σ2

m(sm). Since the emissions of excitation sources
from all the HMMs are mutually independent events, the
joint distribution of all the excitation sources is given by

Qs(q1, · · · , qM ) =

M∏
m=1

Q′
s(qm). (16)

We decompose the residual r so that the joint occurrence

probability is maximized on condition r =
∑M

m=1
qm. The

decomposed values are obtained by solving the following si-
multaneous equations.

σ2
qM

qk + σ2
qk

M∑
m=1

qm = σ2
qM

µqk + σ2
qk

(r − µqM ) (17)

qM = r −
M∑

m=1

qm, k = 1, · · · ,M − 1

The segregated signal of each sound source is then given by

xm(s′, t + 1) =

Pm∑
k=1

am(k)x∗
m(s′, t + 1, t + 1 − k) + qm. (18)



3.6 Flow of the Algorithm
1. Initialization:

gm(s,−1) = 1 for ∀m, s ∈ Σ
x∗

m(s, 0, t′) = 0 for ∀m, s ∈ Σ, t′ < 0

2. Recursion:
for t = 0, · · · , T − 1

for s′ ∈ Σ
for s ∈ Σ

Evaluation of a residual by (5)
Adaptation of gains by (9),(11)

Selection of the path by (13),(14)
Segregation of mixture sound by (17),(18)

3. Termination:
s# = arg maxs∈Σ P (s, T − 1)

4 Experimental Results

This section presents the experimental results of segregat-
ing mixtures of two sound sources in a real environment.
The experiments were conducted using the non-speech sound
data of the RWCP Sound Scene Database in a Real Acoustic
Environment[7]. Ten such sounds (the beating of a wooden
board, a metal can, a plastic case, a drum, a handclap, a
glass cup, a castanet, and a piece of china and the ringing of
a bell-alarm clock and a bicycle bell) were used. We gener-
ated a signal for each sound source by concatenating the five
successive samples in the data base. The generated signal
becomes periodic even if the sound source originally exhibits
aperiodicity. Nodes in each AR-HMM are thus concatenated
in a ring state. We set the prediction order to 18 and the
number of nodes to 10 and estimated the parameters of each
AR-HMM using the generated signal.

Mixture sounds were generated by adding one sound
source to another one, in which we used ten samples other
than the samples used for making the template model. Fig-
ure 3 shows an example of segregated waveforms. In this ex-
ample, we mixed the beating sound of a wooden board and
the ringing sound of a bell-alarm clock. The SNRs of the
segregated waveforms were 25.1 and 24.1[dB]. The SNRs of
all the segregated waveforms are represented by a frequency
distribution as shown in Figure 4. The average SNR was
6.07[dB]. The standard deviation was 12.2[dB].

Mixture Sound

Original Collision Sound

Segregated Sound

Original Ringing Sound of a Bell-Alarm

Segregated Sound

Figure 3: An example of segregated waveforms
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Figure 4: Frequency distribution of SNRs of segregated
waveforms

5 Conclusion

This paper proposed a waveform generation model based
method of segregating monaural concurrent sounds. The
waveform generation model consists of an Auto-Regressive
process and a Hidden Markov Model. The AR-HMM can
represent various types of sound sources, such as periodic,
aperiodic or impulsive sounds, by means of appropriately
designing a network topology of the HMM. The proposed
segregation method is therefore applicable to various types
of sounds. From the experimental results, we were able to
confirm the feasibility of the proposed method.
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