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ABSTRACT

The well-known performance breakdown of subspace-
based parameter estimation methods is usually at-
tributed to a specific property of the technique, namely
“subspace swap”. In this paper, we derive the lower
bound for the maximum likelihood ratio (LR), and use
it as a simple data-based indicator to determine whether
or not any set of estimates could be treated as a maxi-
mum likelihood (ML) set. We demonstrate that in those
cases where the performance breakdown is subspace spe-
cific, this LR analysis provides reliable identification of
whether or not “subspace swap” has actually occurred.
We also demonstrate that by proper LR maximisation,
we can extend the range of signal-to-noise ratio (SNR)
values and/or number of data samples wherein accurate
parameter estimates are produced. Yet, when the SNR
and /or sample size falls below a certain limit for a given
scenario, we show that ML estimation suffers from a dis-
continuity in the parameter estimates, a phenomenon
that cannot be eliminated within the ML paradigm.

1 INTRODUCTION

All subspace-based parameter estimation techniques are
known to suffer a rapid degradation in performance as
the SNR and/or the number of snapshots N drop below
certain threshold values [1, 2, 3, 4]. The explanation of
this phenomenon has involved a discontinuity in param-
eter estimates that are specific to the technique in ques-
tion. In particular, the sole apparent discontinuity (that
is typical for all subspace-based methods) is induced by
the interchange of vectors between the estimated sig-
nal and noise subspaces (“subspace swap”) [4]. Inves-
tigations into these subspace threshold conditions have
been conducted in [1, 2, 3], with some recent attempts
to determine from the data whether or not a subspace
swap has actually occurred [4]. The latter paper also
proposes a method of “curing” performance breakdown
by comparing the deterministic (“concentrated”) likeli-
hood over a set of different partitionings of the signal-
and noise-subspace eigenvectors.

However, the important question of whether the true
ML estimation (that does not have any discontinuous
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assignment of eigenvectors in the signal and noise sub-
spaces) can still suffer performance breakdown has not
been directly addressed so far. Obviously, a positive
answer to this question defines the ultimate limit (in
SNR and/or N), beyond which accurate estimation is
not possible.

In this paper, we demonstrate that the LR for the true
parameters (ée. the exact covariance matrix) does not
depend on the particular scenario, and therefore could
be used as a (statistical) lower bound for ML estima-
tion. We suggest that a comparison of the LR gener-
ated by any given set of parameter estimates with this
lower bound is used to identify non-ML estimates, and in
particular subspace-specific “outliers”. We demonstrate
that for certain threshold conditions, LR maximisation
can result in parameter estimation with outliers that
nevertheless still generates LRs that exceed those pro-
duced by the true (exact) parameters. Obviously, any
“discontinuous” set of estimates that is better than the
true set of parameters (in terms of LR) could not be
identified as being discontinuous, and could not be im-
proved upon with the entire ML paradigm, and there-
fore the above-mentioned threshold conditions for LR
maximisation are treated as the ultimate ones.

Simulation results for direction-of-arrival (DOA) esti-
mation are introduced to support these ideas.

2 PROBLEM FORMULATION

Consider an arbitrary linear antenna array with M sen-
sors located at positions

dE[d1EO, d2,...,dM] (1)

measured in terms of half-wavelength units. We as-
sume that Gaussian processes are observed as a com-
bination of m uncorrelated plane waves with DOAs
0 =1[01,...,0,]7, powers p = diag[p1, ...,pm]” and
Gaussian white noise of power py:

y(t) = S(@)=(t) +n() for t=1,...,.N (2)

where y(t) € CM*1 is the vector of observed sensor out-
puts (the “snapshot”), ®(t) € C™*' is the vector of



Gaussian signal amplitudes
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and n(t) € CM*! is white Gaussian noise. The array-
signal manifold matrix is S(0) = [s(61), ..., 8(6,)] €
CM*m where each

s(6;) = {1, exp (iﬂ'dg sin Gj), Co., EXP (iﬂ'dM sin gj)}T
(4)

is a so-called steering vector. The set of independent
snapshots y(t) € CM*! originates from a complex Gaus-

sian distribution CN (M, 0, R), where
R = S(8) PS"(0) +po Ins - (5)

Given N independent snapshots, the sufficient statistic
for DOA estimation is the DDC (sample) matrix

i = %;ym y (1) (6)

3 LOWER BOUND FOR MAXIMUM LR

Let éua P, and po respectively be the DOA, power and
noise power estimates that together are the set of pa-
rameters uniquely defining the model for the observed
signal data y(¢) involving u plane-wave sources. Then
the sphericity test for the hypothesis

Hy: E{R,"R
Hy: &{R," R

u =coly  against

,f% Feoly, ¢ >0

could be used to accept or reject this model. For Gaus-
sian mixtures, the LR for this test is

N
de R
V(Ru) = HRy 1]?) M
[]Htr (R, R)

0 < y(Ry) < 1, with the set of estimated parameters

{04, Py, Po}ur being those that yield the global maxi-
mum of the function y(R,). Then information-theoretic
or Bayesian criteria may be used for model selection.

Note that the global maximum of the LR function (8)
is identically equal to that of the likelihood function

£(Ry) = min N {logdet(cRy) + trl(eRu) " R}, (9)

since this immediately gives us oapr = tr (Ru_lR)/M
and therefore for B, > 0

M N
M

det Ru_]

tr (Ru_lff)
M

L(R,) = log (10)

For a nonsingular sample matrix R (guaranteed for N >
M), the minimum argument of £(R,,) coincides with the
maximum argument of 4(R,,); thus there is no difference
between maximum LR and ML estimates for R,.

Our lower bound originates from the straight-forward
observation that, for any g > m, the exact covariance
matrix R of the given model obviously belongs to the
admissible set, thus for any given R with N > M and
1> my a proper LR maximisation must yield a solution
R, such that y(R,) > ~(R). This observation would
be of academic interest only, since the exact covariance
matrix R is unknown in practical applications, except
that ¥(R) does not depend on R. Tndeed, according to

®) »

VO(R):MMdetGI:tI'GA} (11)
where G(R) = R"2RR™7% is a random matrix with
complex Wishart distribution CW(N, M, Ipr), com-
pletely defined by the sample support N and the number

of sensors M (N > M), since S{G} = Iy.
4 SIMULATION RESULTS

We address the question of how well LR bound analy-
sis can predict the performance breakdown of subspace
techniques, and to investigate a possible curable domain
in threshold conditions between the edge of subspace
techniques and the boundary of ML techniques. We reit-
erate that beyond the performance breakdown boundary
of ML techniques, where extremely erroneous matrices
have a higher LR than the exact covariance matrix, no
possible remedy is expected.

Consider the scenario comprising a five-sensor uni-
form linear array ds with three sources ws. We conduct
our investigation of performance breakdown conditions
in the case of the moderate sample volume N = 100.
At the comparatively high SNR of 20 dB per source, we
systematically vary the third of the three DOAs:

w3 = [—0.40, 0.00, ws) (12)

with wg = {0.03, 0.04, 0.05, 0.06, 0.08, 0.10} so that the
range of source separations is adequately covered, and
where w = sin §. For each scenario, we calculate (a) the
LR of the MUSIC-derived covariance matrix, comput-
ing the source power estimates p and the white noise
power estimate pg from the traditional DOA estimates
0; (b) ¥(R), where R is the exact covariance matrix; and
(c) v(Ramw), where Rpy is the (local) ML estimate of
the M-variate p.d. Toeplitz covariance matrix with the
(M —m) smallest eigenvalues being equal (the computa-
tional details for LR maximisation appear in [5, 6]). Ad-
ditionally, in each of the 1000 Monte-Carlo trials, these
three estimators are each determined to be (i) a normal
DOA estimate or an outlier (“correct identification”);
and (ii) ML-optimisation successful or not. Since our
LR maximisation algorithm does not guarantee reach-
ing the global extremum and depends on successful ini-



tialisation, success for ML purposes is defined according
to the condition y(Rp) > 4(R). If this condition is not
met, the estimate cannot be a ML estimate. While these
trials should be excluded from the experimental statis-
tics, in practical situations the value v(R) is of course
unknown, so we report on the overall success rate of
ML optimisation. For unsuccessful ML optimisation, we
also identify (iii) those trials that incorrectly identify the
DOAs based on Ragr,. Finally, we also determine (iv) the
error of the worst DOA estimate, in order to compare
this with the Cramér—Rao bound.

Figs. 1-3 show these LR and error distributions for a
representative subset of the above source separations.

Fig. 1 begins with the benign widely separated sce-
nario ws = 0.10. We see that the LRs for Rymmic, R
and Rpg, are statistically similar, though 1t is clear that
the LR-maximised solutions Ruy, are “better” than the
true covariance matrix (in terms of LR); this “improve-
ment” does not involve DOA estimation accuracy im-
provement. The two MUSIC estimates here with an
extremely low LR are easily classified as outliers. Note
that the distribution of y(R) is scenario free.

Fig. 2 shows results for the separation w3 = 0.06, cho-
sen to demonstrate an example where the probability of
correct identification by MUSIC is about one half, in
fact, the MUSIC performance breakdown rate here is
0.535. As expected, the LR distribution for Ryusc has
two widely separated peaks: the peak with extremely
low LRs is entirely due to outliers, while the peak with
optimally high L. Rs is due to the 465 correctly identified
trials. For ML estimation, Rpg still has mainly high
LR values, above vy(R). Specifically, only in 45 trials
was y(Rupr) smaller than y(R). Interestingly, as seen
in the bottom-left subfigure, only six of these 45 trials
gave very low LRs; the remaining 20 outliers have rel-
atively high LR and therefore could not be determined
as inappropriate estimates in practice. In fact, only 12
of the 26 outliers were among the unsuccessfully opti-
mised solutions, while in the 14 other cases these outliers
had LRs exceeding those of the true covariance matrix.
This example demonstrates the ability of our technique
to reliably determine subspace-specific outliers and to
efficiently rectify incorrect estimates by accurate ML
optimisation. This is possible here because there is a
“gap” between the threshold conditions for MUSIC and
those for ML estimation. DOA estimation accuracy is
significantly improved by LR maximisation compared
with MUSIC, since the outliers have been rectified.

Our final example with ws = 0.03 (Fig. 3) was cho-
sen to represent threshold conditions for ML estimation.
Here, MUSIC fails completely, with a sample probabil-
ity of correct identification of only 0.019. The top-right
subfigure indicates that most of the incorrectly identified
trials have a low LR, and so could be reliably determined
as improper estimates. Our Rag solution has a prob-
ability of correct identification of 0.648. We emphasise
that the success rate of ML optimisation is significantly

higher at 0.893, with only 26% of the 352 incorrectly
identified Rpgy trials also having a LR less than that
of R (ie. unsuccessfully optimised). The vast major-
ity of outliers still had LRs greater than that of R. The
bottom-left subfigure leaves no doubt that these outliers,
that are “better than” the exact DOAs, could not be de-
termined nor rectified (“neither predicted nor cured”).
Here we have approached the continuity threshold for
ML parameter estimation. Nevertheless even here, most
MUSIC outliers could be determined, and more than
half of them rectified.

5 SUMMARY AND CONCLUSIONS

We have demonstrated that performance breakdown of
subspace-based techniques such as MUSIC could be reli-
ably determined by LR analysis. Subspace-specific “out-
liers” generate LR values that are significantly smaller
than the introduced LR lower bound. Proper LR op-
timisation is proven to significantly improve the break-
down threshold, extending it to the ultimate point where
breakdown is intrinsic to the true ML solution. Indeed,
incorrect solutions (outliers) that still have LRs exceed-
ing that of the true covariance matrix could not be di-
agnosed nor cured within the ML paradigm.
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Figure 1: LR analysis results for ws = 0.10.
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Figure 2: LR analysis

results for w3 = 0.06.
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Figure 3: LR analysis results for ws = 0.03.



