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ABSTRACT

Depending on the character of the signals, most Blind
Source Separation algorithms exploit either the second
order or fourth order statistics of the signals. In this
paper we present a novel weighted mixed statistics algo-
rithm which performs signī cantly better than the sin-
gle type statistics algorithms. As the algorithm is a
generalisation of the single type statistics algorithm, it
requires less prior information. Estimating functions
are used in order to derive the weights. We provide
simulations to show the enhanced performance of the
weighted mixed statistics approach, even in mixtures
were the signals contain no temporal information.

1 Introduction

Blind Source Separation (BSS) is concerned with recov-
ering the original unknown sources from their observed
mixture. The algorithm operates blindly in the sense
that, except for statistical independence, no a-priori in-
formation about either the sources or the transmission
medium is known. Most BSS algorithms operate in two
steps. First the observed data is whitened. Then
the transformation that relates the unknown sources to
the decorrelated mixture is found as a pure rotation,
since the sources and the decorrelated observations are
white vectors. In algebraic BSS methods, this rota-
tion is found by unitarily diagonalising a set of matri-
ces. If the source signals have di®erent spectral con-
tents or are non stationary, these matrices can be con-
structed from Second Order Statistics (SOS) only [1]. If
the sources are white, one must resort to Higher Order
Statistics (HOS) [2]. Note however, that HOS based
separation is only possible if the sources are indepen-
dent and non Gaussian. Thus, a certain amount of
prior knowledge about the sources is necessary in or-
der to choose the appropriate algorithm. In this paper
we propose to generalise the BSS solution. The mix-
ing matrix is found by jointly diagonalising a weighted
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combination of non-zero-lag whitened covariance matri-
ces and the eigenmatrices of the fourth order cumulants.
Hence, no prior information about the sources is neces-
sary at all. Moreover, using a weighted combination of
di®erent statistics, separation can be achieved in cases
where algorithms relying on single order statistics will
fail. The JADETD algorithm [3], uses a combination of
several non-zero-lag covariance matrices and the fourth
order cross-cumulants in order to separate a mixture
of three white Laplacian and three coloured Gaussian
signals. However, the issue of weighting was not ad-
dressed. Simulations will show that suitable convex
weights can improve performance signī cantly. Merg-
ing statistics ad hoc is adequate enough for separating
the mixture described in [3]. The HOS will identify
the Laplacian sources and virtually ignore the Gaussian
ones, the SOS concentrate on the coloured Gaussian
sources and do not take any notice of the Laplacians.
Thus, each of the statistics identify di®erent signals and
JADETD is therefore able to separate all the sources
completely. As a matter of fact, the sources could be
separated more e±ciently by using two di®erent types of
extraction techniques independently, such as FastICA,
which will extract the Laplacians, and a type of power
method, which will identify the Gaussians. In [4], the
authors suggest a type of weighted combined statistics
approach based on the Kolmogoro® complexity. Our al-
gorithm makes direct use of the second order covariance
matrices and the fourth order eigenmatrices.

2 Problem Formulation

The instantaneous noiseless BSS problem, with the as-
sumption of an equal number of sources and sensors, can
be described mathematically as follows:

x (t) = As (t) (1)

In this context, the vector s (t) = [s1 (t) ; :::; sN (t)]T

contains the original sources, the vector x (t) =
[x1 (t) ; :::; xN (t)]T contains the array output sampled
at time t and A is the N £ N mixing matrix or transfer
function between the sources and sensors. In this pa-
per, only real sources will be considered. For the sake



of simplicity, we will assume that the mixing matrix A
is orthogonal. This is by no means a restriction as any
arbitrary mixing matrix can be factored as A = W¡1U ,
where W and U are a whitening and orthogonal matrix
respectively. The whitener can be found by using stan-
dard principal component analysis techniques. An im-
plicit assumption in BSS is that the sources have unity
power. Separation is achieved if a vector y can be found
so that

y (t) = Bx (t) = PDs (t) (2)

where B is the unmixing matrix, P is a permutation
matrix and D is a diagonal matrix. Hence, we can
estimate the sources up to their order and their power.

3 Finding the Mixing Matrix

3.1 Second Order Statistics

Let Rx (¿) and Rs (¿) be the covariance matrices of the
mixture and the sources, then:

Rx (¿) = ARs (¿) AT (3)

As the sources are independent, Rs (¿) will be diago-
nal at all lags ¿ . Hence, equation (3) shows that A can
be found by performing a unitary eigendecomposition of
Rx (¿ ). The eigenvectors obtained will be the columns
of the mixing matrix and the eigenvalues a permutation
of the autocorrelation of the sources at lag ¿ . Note
that Rx (0) can not be used as Rx (0) = ARs (0)AT =
AAT = I and does not provide any additional informa-
tion to estimate the mixing matrix. In theory, any co-
variance matrix at non-zero lag is su±cient to estimate
the mixing matrix. In practice, however, it is useful to
use a set of covariance matrices as this would enhance
the statistical e±ciency of the algorithm and prevent an
unfortunate choice of lags [1].

3.2 Higher Order Statistics

The cumulant matrices of the observations are de¯ned
as:

8M Qx (M) : qij =
X

k;l

cum fxi; xj ; xk; xlg mkl (4)

where mkl are the elements of an arbitrary matrix M .
The cumulant matrix is simply a linear combination of
two dimensional slices of a fourth order tensor. Due
to the multilinearity and the additivity property of the
cumulants, (4) can be written as:

8M Qx (M ) = A¤M AT (5)

where ¤M = diag
©
·1a

T
1 Ma1; :::; ·NaT

N MaN

ª
, ·p is the

kurtosis of the pth source and ap is the pth column of
A. Equation (5) shows that the mixing matrix can be
found as a unitary diagonaliser of the cumulant matrices
for any arbitrary matrix M . In practice, it is advisable

to use the columns of the mixing matrix A for M , i.e.
M = apa

T
q for all 1 · p; q · N . Substituting this in

(5) will yield the so called eigenmatrices of x, which for
all p = q become

Qx

¡
apa

T
p

¢
= ·papa

T
p (6)

and zero for all other indices. A method of constructing
the eigenmatrices without any knowledge of the mixing
matrix A, can be found in [2]. Jointly diagonalising the
di®erent eigenmatrices will yield an estimation of the
mixing matrix.

3.3 Mixed Statistics

From (6) it is clear that the N eigenmatrices are of
the same dimensions as the covariance matrices, namely
N £N . Moreover, ignoring noise and estimation errors,
the mixing matrix found by diagonalising the eigenma-
trices is precisely the one found by diagonalising the co-
variance matrices, up to a permutation of the columns.
Let K be the number of non zero lag covariance matrices
to be used and L = K + N . We then form L matrices
Gl:

Gl =

½
¯ £ Qx

¡
apa

T
p

¢
for 1 · l · N

(1 ¡ ¯) £ Rx (¿ l¡N ) for N < l · L

(7)

The mixing matrix is found by jointly diagonalising the
matrices Gl with l = 1; :::; L using the approximate joint
diagonalisation algorithm proposed in the appendix of
[1] and [2]. Thus, the mixing matrix is estimated on
basis of the HOS and SOS. The JADETD algorithm
suggested in [3] is actually a special case of our algo-
rithm, where ¯ = 0:5. Note that a large value for ¯
means that more emphasis is put in the HOS, whereas
a small value for ¯ means that the SOS are considered
more reliable. The next step is to determine ¯.

4 Decision Rule

Devising a decision rule that will assign the di®erent
weights is a di±cult task as it must rely on some kind
of performance criterion. Finding a performance crite-
rion that does not use any prior information about the
mixing matrix or the sources, is on itself not a trivial
task. Traditionally, the fourth order cross-cumulants or
second order cross-cumulants are used. If the sources
are successfully separated, these should be close to zero.
But these cannot be used here, as they are closely re-
lated to the respective objective functions of the JADE
and the SOBI algorithm. Clearly, the performance cri-
terion based on the fourth order cumulant will be biased
towards the JADE algorithm, while a criterion based on
the covariance matrices will favour the SOBI algorithm.
It is crucial to ¯nd a measure of separation that does
not, or at least not entirely, rely on the second or fourth
order statistics. An ideal choice would be Herault's
and Jutten's approximate independence test suggested



in [5] as it relies on odd order moment only. However,
the test is only applicable to sources that have even
distributions. Many neural network type blind source
separation algorithm make use of estimating functions.
One of the most used estimating function is:

F (y ; B) = I ¡ f (y)yT (8)

where F (¢) is a N £N matrix function, the vector y con-
tains the estimated source signals, I denotes the identity
matrix and f (¢) is a nonlinear function [6]. The esti-
mating function becomes zero as B approaches the sep-
arating matrix. Expanding f (¢) as a Taylor series and
taking the expectancy, (8) can be written elementwise
as:

E fF (y; B)gij = ¡f1Efyiyjg ¡ :::

¡ fkEfyk
i yjg ¡ ::: for i 6= j (9)

where E f¢g is the expectation and fDgij denotes the
ijth element of the matrix D . When yi and yj are
independent, this becomes:

E fF (y; B)gij = ¡f1EfyigEfyjg ¡ :::

¡ fkEfyk
i gEfyjg ¡ ::: for i 6= j (10)

As the source signals are assumed to be zero mean,
E fyjg = 0 and at independence E fF (y; B)g becomes
zero. If either E ff(y)g or E fg (y)g is zero then:

F (y;B) = I ¡ f (y)g (y)
T

(11)

where g (y) is a nonlinear function di®erent from f (y).
Using (11) or (8), we can develop a criterion that tests
the independence between two components:

h (yi ; yj ) = f (yi) g (yj ) (12)

where yi denotes the ith estimated source signal and
f (¢) a nonlinear function. Depending on the nonlin-
earities and the source distributions, g (y) is either a
nonlinear function, as in (11), or the identity function
as in (8). Independence is restored when h (yi; yj) = 0.

5 Simulations

The MS f®g signal is a discrete i.i.d. signal that takes
its values in the set f¡1; 0; ®g with respective prob-
abilities

©
1= (1 + ®) ;(® ¡ 1)=®; 1=

¡
® + ®2

¢ª
. We

¯rst demonstrate the advantage of weighting. Three
di®erent signals, MS f2:1g, M S f2:3g and MS f2:8g,
of sample length 3000 are generated. Temporal in-
formation is introduced by passing the source signals
through an AR(2) ¯lter with complex conjugate poles
at exp (§0:16j), exp (§0:17j) and exp(§0:165j). As the
spectra of the signals are very similar, SOS based sep-
aration is very unlikely to succeed. The estimated cu-
mulants of the sources are 0:33, ¡0:11 and 0:39. From

(6) it is evident that the eigenmatrices are a function
of the source kurtosis. As the kurtosis are small, the
eigenmatrices will not provide enough information to
estimate the mixing matrix. The three sources are
mixed by a 3 £ 3 matrix with elements picked from
a Gaussian distribution. Next we form 100 sets of
weighted covariance matrices and eigenmatrices using
(7) with ¯ ranging from zero to one. An estima-
tion of the mixing matrix is then found by applying
the joint diagonalisation algorithm to each set individu-
ally. The performance is measured by the PI (P ) index,

given by: PI (P ) =
PN

i=1

³PN
j=1

j pij j
maxk( j pik j) ¡ 1

´
+

PN
j=1

³PN
i=1

j pij j
maxk(j pkj j) ¡ 1

´
, where maxk (j pik j) de-

notes the maximum per row and maxk (j pkj j) the max-
imum per column and P = BA, where B is the separat-
ing matrix. The PI (P ) index measures the distance of
the matrix P to a scaled permutation matrix. Figure
1 shows the performance versus the weight of di®erent
statistics.
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Figure 1: Quality of separation versus the weight of the
statistics for three ¯ltered M S f®g sources

From ¯gure 1, we see that correct weighting is cru-
cial for optimal separation. The JADE algorithm (B)
achieves a PI (P ) of 1:76, for SOBI (A), the P I (P ) mea-
sures 1:30. Bracketed letters refer to the same letters
in the ¯gure. At the optimal weight (C), the P I (P )
is 0:44, hence a big improvement in performance. Note
that the JADETD (D) algorithm, which implicitly as-
sumes a weighting of 0:5, performs not much better than
the JADE (B) algorithm, and actually worse then SOBI
(A). We next demonstrate the use of a decision func-
tion. Two signals of a 1000 sample length are created
using M S f2:1g and MS f2:4g. The signals are then
mixed by a 2 £ 2 matrix with elements picked from a
Gaussian distribution. Again a graph is constructed
that shows the P I (P ) versus the weights, as in ¯gure 1.

Figure 2 shows that using only one type of statis-
tics (point A and B) does not separate the sources suf-
¯ciently. However, using the combined statistics ap-
proach with ¯ = 0:14 (C), unmixes the sources com-
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Figure 2: Quality of separation versus the weight of the
statistics for two un¯ltered MS f®g sources

pletely. A PI (P ) of 0:03 is obtained. The JADETD

approach (D) does not obtain in this case a better sep-
aration than the ordinary JADE algorithm (B). We
next demonstrate the use of the independence test given
in (12). The estimated source signals y1 and y2

were reconstructed from the di®erent unmixing matri-
ces. Then the function h = f (y1) g (y2) was calcu-
lated for each weight. We have performed two exper-
iments, one with h1 = tan¡1 (y1) £ y2 and one with
h2 = tan¡1 (y1) £ sin (y2). We expect the former to
perform better, as neither E ff (y1)g nor E fg (y2)g are
zero.
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Figure 3: h1 (solid) and h2 (dashed) versus the weight
of the statistics for two un¯ltered MS f®g sources.

Figure 3 shows that the points where h = 0 are very
close to the points where separation is optimal. Re-
call that optimal separation is achieved when ¯ = 0:14.
Close inspection shows that h1 and h2 are zero at
¯ = 0:1464 and ¯ = 0:1375 respectively. At these
points PI (P ) = 0:045 and PI (P ) = 0:06. Hence by
using the weighted statistics algorithm with a decision
function we have improved performance by at least one
order in magnitude! And this without any additional
prior information. An important note is of order here.
One might ask how it is possible to use SOS as there is
no temporal information in the sources. Due to noise
and estimation errors, it is impossible to ¯nd the exact

mixing matrix. Using only one type of statistics, or even
a ¯xed combination of di®erent statistics, will yield one
possible estimation of the mixing matrix. A weighted
combination however, will give an in¯nite amount of
possible estimated mixing matrices. Based on an in-
dependent criterion, the decision rule then selects the
optimal weighting and hence the most suitable matrix

6 Conclusion

The bene¯ts of using a weighted combination of di®er-
ent types of statistics have been discussed. A decision
rule that assigns the di®erent weights was then derived.
Simulations have shown the enhanced performance of
the new algorithm. The example also con¯rmed that
advantage may be gained from using combined statistics
even if the sources do not contain any temporal infor-
mation. Implementation aspects are beyond the scope
of this paper. It su±ces here to say that the indepen-
dence criterion can be formulated as a constraint. The
problem can then be solved using Lagrange program-
ming neural networks. For more information about the
use of a constraint in BSS, the reader is referred to [7].
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