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ABSTRACT 
In this paper NASH1 algorithm, a new matrix-based 
method for identification of radar pulse train, is 
implemented by systolic array.  NASH can be used to 
identify the PRI for constant, staggered, and jittered 
signal. Previous matrix-based methods can only identify 
the first type of signal, i.e. constant PRI.  
The complexity of the computation in NASH is more than 
the previous matrix-based method. To overcome this 
drawback a systolic array, the best parallel structure for 
the matrix operation, is designed. The systolic array helps 
to parallelize the matrix inversion, which is the most time 
consuming part of NASH algorithm. 

Keywords: ESM, Matrix Operation, Systolic array, 
Deinterleaving, Parallelism. 

1. INTRODUCTION 

An ESM (Electronic Support Measure) system consists of 
three sections, namely clustering, deinterleaving and 
identification. Clustering and deinterleaving means 
separation of arriving pulses into some pulse trains, 
associating each one to specific radar [1]. After grouping 
input pulses, each pulse train must be characterized. 
Characterization of the radar system, which has sent the 
pulse train, is usually called identification. The main 
character that must be specified during identification is 
PRI (pulse-repetition-interval), which may be constant, 
staggered or jitter type. A sufficiently large number of 
samples must be taken for exact identification. Having 
numerous pulses results in a huge computation in the 
identification step. On the other hand the ESM system 
must act as a real time system, so the time of operation is 
vital. Many different techniques are introduced by 
researchers for pulse identification [2-4]. The most 
important goal is the reduction of the total time of 
identification. Usually pulse time-of-arrival (TOA) is used 
as the main feature for identification. Two of the most 
_______________________________________ 
1 NASH is first couple of letters of author names.  

famous techniques for deinterleaving and identification 
are TOA difference histogram [5] and sequence search 
[5,6]. Recently a matrix-based technique is introduced for 
TOA identification, which eliminates the ambiguous 
parameters such as bin size and thresholding of previous 
algorithm. Matrix operation and matrix-based method 
inherently has the ability of parallelism [7]. The proposed 
method in  [7] can only be used to identify the constant 
PRI. 
In this paper we generalize previous method [8], by 
introducing two new matrices: PM (PRI matrix) and NDT 
(Normalized Difference TOA). The introduced method, 
which is called NASH, can be used to identify the 
staggered and jitter signals, in addition to constant PRI 
signals. The most time consuming part of NASH is 
inverting NDT. Systolic array, the most suitable parallel 
structure for matrix operation, is used to minimize the time 
of operation and reaching the real time system. 
The rest of the paper is organized as follows: In section 2 
previous methods of TOA identification is reviewed. In 
section 3, PM and NDT matrices are introduced. In 
section 4 the NASH is introduced on basis of inverse of 
NDT matrix and its computation complexity is compared 
with other methods. In section 5, systolic structure for 
implementing NASH is designed. Conclusion is offered in 
last section. 

2. PREVIOUS WORKS 

Histogramming and sequence search are two mostly used 
techniques, which is proposed for pulse identification. 
[5,6]. In histogramming each TOA is subtracted from 
every subsequent TOA and a histogram is made on basis 
of TOA’s difference [5,6].  In sequence search algorithm 
the sequences of identical interval are extracted from input 
pulses. The latter algorithm is more accurate and reliable 
at the expense of processing speed [5].  
Both techniques have inherent drawbacks. Histogramming 
needs bin size and thresholding parameters that must be 
adjusted adaptively. Sequence search needs many 
computation steps and both techniques inherently cannot 
be performed on parallel manner.  



Recently a matrix-based method is proposed by Ray [7], 
which has overcome the above drawback. In [7] the matrix 
of differences of TOA, TOA∆ , is defined as follows: 
 NjiforiTOAjTOATOA ≤≤−=∆ ,1)()(  (1) 

Where N  denotes the number of pulses. The properties of 
1−∆TOA and its relation to PRI of input pulses were 

discussed. The proposed method in [7] can simplify the 
identification and also has ability of finding location of 
missing pulses. Clearly the ability of determining the 
missing pulses’ location is analogues to inability of 
averaging pulses’ features. On the other hand matrix 
operation can be done in parallel manner, which results in 
obtaining a real time identifier. The main drawback of 
proposed method in [7] is the lack of interpreting non- 
uniform PRI, especially in staggered signals. We will 
express the RAY’s method in next section in detail. 

 
3. PM AND NDT MATRIX 

 
In [7] TOA∆ matrix is considered as product of PRI scalar 
and a Harmonic Matrix (HM).  
 TOAHMPRI ∆=.  (2) 
The harmonic matrix, HM, is a Toeplitz matrix, whose 
inverse for extremely large value of matrix size would 
always be tri-diagonal matrix. All main diagonal elements 
of 1−HM are equal to 1−  except its two corner elements. 
For extremely large number of received pulses, N , the 
two corner elements in main diagonal approach 5.0− . 
Also for finite value of N  the two top-right (TR) and 
bottom-left (BL) elements are non-zero but for extremely 
large number of N the TR and BL corner elements of 
matrix approach zero. Inversion of Equation (2) yields:  
 11.1 −− ∆= TOAHM

PRI
 (3) 

In Equation (3) PRI  is scalar, so the above properties of 
1−HM will propagate to 1−∆TOA . The main conclusion in 

[7] expresses that trace of 1−∆TOA is equal to 
PRI

N )1( − . In 

the staggered signal which the PRI changes periodically; 
the only result is repeating meaningless numbers on main 
diagonal of 1−∆TOA with period of staggered degree. 
The lack of resulting and interpreting main diagonal 
elements of 1−∆TOA  in [7] originated from invalidation of 
HM  for staggered signals.  
Here we change the scenario by defining PRI Matrix, PM, 
which in a special case (of uniform PRI) will be the same 
as HM. 
Let PM  (PRI Matrix) be defined as a diagonal matrix 
with size N  (the number of received pulses), whose 
diagonal elements will be equal to PRI’s of received 
signals. If the signal was staggered the repeated sets of 
PRI’s appear on the diagonal of PM. For constant PRI 

signal, all diagonal elements of PM will be equal to PRI 
value. Equation (4) shows PM for staggered signal, with 
staggered degree of S .  
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In constant PRI signals equation (2) must be improved as 
follows:  
 TOAHMPM ∆=×  (5) 
It must be noted that for staggered signal the HM must 
also be changed. To generalize Equation (5), a general 
harmonic matrix must be defined so that its multiplication 
with PM makes TOA∆ . Therefore:  
 TOAGHMPM ∆=×  (6) 
where GHM denotes general harmonic matrix.   
The difference time of arrival matrix, TOA∆ , is defined as 
follows:  
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(7) 

in which  kkk Ttt =−+1 . According to Equation (6) and 
(7), the harmonic matrix must be a function of PRI’s. 
Obviously GHM can be found by normalizing each row 
of TOA∆ by its upper co-diagonal elements. Since 
GHM is the normalized TOA∆ , in the rest of this paper 
we call it NDT . Hence:   
[ ] =×NNNDT                                                                       (8) 
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Obviously in a special case where all iT ’s are the same 
(constant PRI signals), the NDT will be the same as 
harmonic matrix (HM) in [7]. 

4. NASH IDENTIFICATION METHOD  

As expressed in previous section the properties of 
1−∆TOA is due to the properties of the inverse of harmonic 

matrix, which in general case is 1−NDT . Since this 



general matrix also contains information of pulses’ arrival 
time, it may be used for identification of input signals.  In 
the rest of this section we discuss the main properties of 
NDT  and propose an algorithm for extracting PRI’s of 
staggered signals. Equation (8), NDT matrix expression, 
can be rewritten as follows:  
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(9) 

where jiij TTR = . Obviously 1=iiR , so upper co-
diagonal elements of NDT are equal to 1. 
Computing 1−NDT results in the following properties: 
1. 1−NDT is tri-diagonal matrix except for two elements 

of bottom-left (BL), top-right (TR)  corner. If size of 
matrix, N , is extremely large, these two corner 
elements approach zero. 

2. All main diagonal elements are negative and all of co-
diagonal elements are positive. 

3. All elements of the lower co-diagonal are equal to 
0.5. 

4. Summation of non-zero elements in each column is 
equal to zero (for extremely large value of N ). For 
finite value of N , sum of two other elements in those 
columns is equal to non-zero corner (BL or TR). 

5. Elements of the main diagonal (except the two corner 
elements) and upper co-diagonal are repeated 
periodically with period of S , the staggered degree. 

According to the above properties, one can write the 
general form 1−NDT as follows:  
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Equations (9) and (10) can be used to compute PRIs of 
input signals versus 1−NDT  elements. Constant values in 
main lower co-diagonal of 1−NDT , and relation between 
upper co-diagonal NDT and zero value of main diagonal 
of NDT , will simplify this computation and results in a 
recursive formula. 
Multiplying NDT by 1−NDT obviously makes a unity 
matrix, so:  
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Also it must be noted that ∑
−

=

1

1

N

k
kT is equal to time of 

measuring or total interval time of receiving N pulses 
which we show by TotalT . Rearranging equation (12) 
yields:  
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The set of Equation (14) can be used recursively for 
finding PRI’s. Note that the staggered degree can be found 
when 11 TTS =+ . Therefore the NASH algorithm steps are 
as follows: 
1. Computing NDT  
2. Finding diagonal elements of 1−NDT  
3. Calculating 1T  from first element of 1−NDT diagonal 

(Equation 13) 
4. Calculating iT ’s recursively from 1−iT and 

1−NDT diagonal elements (Equation 13) 
5. Comparing iT  with 1T and finding staggered degree, 

S (smallest i which 11 TTi =+ ). 

6. Calculating average of iT ’s from ∑
=
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S

N
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So NASH has the following advantages comparing 
previous matrix-based method: 
1. NASH can detect missing pulses similar to the 

method introduced in [7] (the related elements in the 
main diagonal and co-diagonal would change and its 
effect appears in computed iT  regarding iT .) 

2. NASH computes the average of PRI’s so it can be 
used for noisy PRI’s. 

3. NASH can be applied for staggered signals, which is 
lacking in [7]. Also it can be used for jittered and 
uniform PRI’s like other methods. 

5. SYSTOLIC ARRAY DESIGN 

In this section the systolic array, which is the best parallel 
structure for matrix operation [8], is used for matrix 
inversion, the third step of NASH. Although systolic array 
can be used for other steps of NASH, the third step is the 
most time consuming part of NASH.  
Figure 1 shows the structure of the systolic array for 

4=N . The size of matrix, N , which is equal to number 



of pulses, must be clearly more than 4, but the selected 
value for N in figure 1, is chosen for simplicity of figure 
and the systolic structure can certainly be expanded to the 
suitable size. 

 
Figure1: Systolic array for matrix inversion for 4=N  

The speedup for the systolic structure of figure1 is equal 
to 23 2.0)25( NNN ≈− . Table 1 shows the computation 
complexity of Nash algorithm. The total computation 
steps are approximately equal to 25.1 N . So implementing 
NASH by systolic reduces computation complexity of 
NASH that was NASH drawback comparing [7]. Also 
NASH can compute the average and the ratio of PRI in the 
staggered signals, which is the lacking of the previous 
method. Comparing non-matrix-based methods, which 
usually use basic difference histogramming, Nash has 
significantly lower computational complexity.  Their 
complexity is approximately PRI equal to 35.0 N for 
uniform PRI and 35.0 SN for staggered signals, where N  
and S denote the number of pulses and staggered degree, 
respectively [9]. 

Table 1. NASH algorithm Computation complexity 

Step Operation needs 
Determining TOA∆   )1(5.0 −NN  

Computing NDT  )12(2 −− NN  

Reversing NDT  25 −N  

Computing iT ’s N2  

Computing iT ’s SN +  

Total Operation  22 5.125.55.1 NSNN ≈−++  

6. CONCLUSION 
Pulse train identification is a time-consuming job in ESM 
systems, considering the real-time operation of such 
systems. So much research has been carried out to find 
more rapid algorithm for pulse identification. In this paper 

we offer a new matrix-based algorithm by defining PRI 
matrix ( PM ) and a general harmonic matrix ( NDT ), with 
their product making the difference time of arrival 
matrix TOA∆ . The properties of 1−NDT  were discussed 
and the NASH algorithm is introduced. NASH can be 
applied to identify the staggered signals as well as 
constant PRI signals while previous matrix-based method 
can only be used to identify the constant PRI signal. 
Systolic array is the most used parallel structure for matrix 
operation. To reduce the computational time, the systolic 
array is used to implement NASH.  
An area for further study is investigating the effects of 
noise on the system. One can compute the error caused by 
noise on the pulses as a function of the level of noise in 
the system. Another area for future work is denoting the 
other part of NASH by systolic arrays. 
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