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ABSTRACT
In this paper, an efficient algorithm for recursive estimation

of a Non-linear Autoregression (NAR) model is proposed. In
particular, the model parameters are dynamically adapted
through time so that a) the model response, after the parameter
updating, satisfies the current conditions and b) a minimal
modification of the model parameters is accomplished.  The first
condition is expressed by applying a first-order Taylor series to
the non-linear function, which models the NAR system. The
second condition implies the solution to be as much as close to
the previous model state. The proposed recursive scheme is
evaluated for the traffic prediction of real-life MPEG coded
video sources.

1. INTRODUCTION

Linear Auto-Regressive models (ARs) have emerged as a
useful tool for many applications in signal and/or image
processing problems. Examples includes, texture modeling of
visual content, speech processing applications, models for future
sample prediction and so on [1]. The input-output relationship of
an AR model is provided by the following equation
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where )(nx  is the input signal, while the )(ne  an i.i.d.

(independent and identically distributed) error signal. The iϕ
refer to model parameters, while p denotes the model order.
Parameters iϕ  are estimated using the Yale Walker equations,

which are obtained by minimizing the error )(ne  as described in

[1].
As is observed from (1), the parameters iϕ  are considered

constant for all samples of signal )(nx . However, this is valid

for stationary signals. Non-stationary process requires adaptive
AR filters in which the model parameters are updated through
time. Adaptive AR models have been proposed in the literature
such as the RLS (Recursive Least Square) algorithm.

Another drawback of AR models is that they linearly relate
the signal samples, which is not valid for many real-life
applications, where many non-linearities usually appear. To face
the aforementioned difficulty, the linear input-output relation of
(1) is extended to a non-linear one. However, the difficulty in
this case is the estimation of the model parameters. For this
reason, usually non-linear functions of specific type have been
used, such as the quadratic filters, in which the model parameters
can be calculated more effortlessly [2].

Other more complicated approaches use a generic non-linear
system implemented by a neural network architecture [3].
However, the aforementioned algorithms are usually trapped to
local minima and thus the error )(ne  is not minimized,

deteriorating the model performance. Another disadvantage is
that they are not suitable for non-stationary signals in which the
model parameters should be adapted through time. Furthermore,
the computational complexity is high so that its implementation
to real-life applications is prohibited [4].

To overcome the above-mentioned difficulties, a new efficient
algorithm is proposed in this paper for recursive estimation of the
parameters of a Non-linear Autoregression model, which is
called RNAR in the rest of the paper. Particularly, the proposed
scheme recursively updates the model parameters through time
so that a) the model response, after the adaptation, satisfies the
current conditions as much as possible while simultaneously b) a
minimal modification of the model parameters is obtained. These
two conditions implies that the system adapts to the current
conditions, without however, forgetting the previous model
behavior.

The first condition is expressed by analyzing the input-output
relation of the non-linear model using a first order Taylor series
expansion.  The second condition is satisfied by the minimum
modification of the model parameters. Combining the two above-
mentioned conditions, the optimal parameter increments are
uniquely estimated in an efficient and cost effective manner.

The proposed RNAR model is then applied to predict the
traffic rates of real-life MPEG coded video sources.
Experimental results indicate that a very good prediction of the
video traffic is obtained compared to all other linear or non-
linear techniques.

2. NON-LINEAR AUTOREGRESSIVE MODELS (NAR)

Similarly to equation (1), an NAR of order p will satisfy the
following equation
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where the )(ne  is the i.i.d. error as in (1) and )(⋅g  a unknown

non-linear function, which models the input-output relation. In
the following, we denote the model of (2) as NAR(p) similar to
the notation of the linear case.

The main difficulty of implementing an NAR model is that
function )(⋅g  is actually unknown. For this reason, modeling of

function )(⋅g  is required. Using the principles of functional



analysis theory, we can find an estimate of )(⋅g , say )(ˆ ⋅g  as

follows [3]

∑ ∑ 









−⋅Φ=−≈−

=k

p

j
kjkk jnxwvngng

1
, )())1(())1((ˆ xx (3)

In the previous equation, the kv , kjw ,  refer to the model

parameters, while )(⋅Φ k  to appropriate functionals. A common

choice for )(⋅Φ k  is the sigmoid function,

))exp(1/(1)( xxk −−=Φ (4)

From the above, it is clear that estimation of an NAR(p)
model is equivalent to the estimation of the parameters kv ,

kjw , of (3) which model the unknown function )(⋅g .

3. RECURSIVE NON-LINEAR AUTOREGRESSIVE

MODELS (RNAR)

      In this section, we propose an efficient algorithm for
recursive estimation of the model parameters of (3). Let us first
assume that all model parameters at time m are included in a
vector )(mw . That is
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In this case, we have added the index m to indicate that the
parameters are time dependent.

Without loss of generality, let us assume that the model
parameters are updated at the time instance k.  Then, the
recursive algorithm is implemented so that the system response
satisfies the current condition as much as possible, i.e.,
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where )(ˆ )( ⋅kgw is the estimate of )(⋅g  when )(kw  model

parameters  are used.
In order to track equation (6), we assume that a small

perturbation of the model parameters is sufficient to adapt the
model performance to current conditions. Thus, the parameters
are related as
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where w∆  refers to the small increment of the model
parameters.

Equation (7) permits the application of a first order Taylor
series expansion to (6). The sufficient conditions for being valid
the Taylor series expansion can be found in [5]. In this case, we
can prove that the condition of (6) is written as

wa ∆⋅= Tb (8)
where the scalar b is the difference of the model response before
model updated and the actual response, that is
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and vector a depends on the previous model parameters as
follows
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 However, many w∆  can satisfy equation (8) since the
number of elements of w∆ is greater than one. Uniqueness is
imposed by an additional requirement, which takes into
consideration the variation of the model parameters. In particular,

among all possible solutions the one which causes a minimal
modification of the model parameters is selected as the most
appropriate. This means that the model adapts to current
condition with, a minimum modification of the previous model
response. This requirement is achieved by following constraint
minimization

minimize  
2
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subject to  0wa =∆⋅− Tb  (12)

3.1.  Model Parameters Estimation

Equations (11) and (12) are minimized using Lagrange
multipliers. In this case (11) and (12) are equivalent to [6]
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where the elements of vector �  corresponds the Lagrange
multipliers. Differentiating equation (13) with respect to w∆
and �  and setting the results equal to zero, we obtain the
optimal parameter perturbation
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From equation (14), it can be seen that the optimal parameters
increments w∆  are directly calculated with respect to vector a
and scalar b.  As a result, a recursive implementation of a non-
linear autoregression model is accomplished which is denoted as
RNAR in the following. The physical meaning of equation (14)
is presented in Figure 1. In this case we have considered that
only two parameters are required for  modeling the NAR system.
As can be seen from Figure 1, the optimal solution is obtained as
the perpendicular from the origins to the line defined by the
constraint.

3.2.  Activation of Parameter Updating

While, in theory, the recursive estimation of model parameters
can be performed at every new incoming sample of the signal, in
practice there is no reason to activate the adaptation algorithm in
case that the model accuracy is satisfactory.  For this reason, the
deviation of the actual signal samples and the model response is
evaluated.
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Figure 1: A graphical representation of the optimal small
perturbation solution
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In case that the deviation exceeds an unacceptable threshold
the model parameters are updated (A=1). Otherwise, the model
parameters remain the same (A=0).

4. APPLICATION TO TRAFFIC PREDICTION OF

MPEG VIDEO SOURCES

In this section, we apply the proposed RNAR model for traffic
prediction of real-life MPEG coded video sources. Video traffic
prediction is very useful for network management algorithms and
congestion control schemes, which prevent the communication
systems from possible overload [7], [8].

In our simulations, a long duration MPEG coded video source
has been evaluated. Thus, scene changes, high variation of
motion activity, camera zooming and panning and changes of
luminosity conditions are encountered. For the MPEG coded
scheme, three different types of frames are presented; the I
(Intraframe), the P (Predicted) and the B (Bi-directional). These
types of frames are predicted individually  since they present
different statistical properties [7].

Figure 2 presented the traffic rate of I, P and B frames of the
MPEG sequence over a time window of 250 frames versus the
frame number. In this figure, the solid line corresponds to the
actual data, while the dotted line refers to the predicted data. For
traffic prediction, the proposed RNAR model has been applied.
In our case, model adaptation is performed each time a prediction
error greater than 10% has been encountered. As is observed, in
all cases, the prediction accuracy is very high, even at time
instances of highly fluctuated frame rates.

An alternative way to indicate the good performance of the
proposed model as traffic-rate predictor is to plot the predicted
data versus the actual ones. Figures 3 present the results for the
three types of frames (I, P and B) of the sequence. In these
figures, the solid line represents the perfect fit.

4.1. Comparison with other Linear and Non-linear
Traffic Prediction Models

In the following, the performance of the proposed RNAR
model as traffic rate predictor is compared with three other
methods. The first uses a Recursive implementation of a linear
AR model (RAR) [1].  The second a recurrent neural network
architecture as in [9], which simulates a Non-linear ARMA
(NARMA) system. Finally, in the third method an non-adaptable
NAR model [10] has been used.

As an objective criterion for evaluating the prediction
accuracy in our case, the relative prediction error with respect to
the actual data E  is use,
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where N  is the total number of samples of the signal, while

)(nx , )(ˆ nx  the nth sample of the actual and predicted signal.

Table I presents the prediction accuracy results obtained for
the I, P, B frame streams using the three aforementioned
methods. As is observed, the proposed model provides the best
prediction performance in all cases, while the NARMA approach
[9] the second one. This is due to the fact that the first method
uses a linear model (although its recursive implementation) to
predict the MPEG video traffic, while the third does not update
model parameters during prediction. To clearly illustrate the
differences of the proposed method from the second best
technique (NARMA), a rate by rate comparison is depicted in
Figures 4.  As can be seen, the NARMA cannot track with high
accuracy the highly fluctuated traffic rates. Furthermore, it
presents an unstable behavior especially when applied for long
traffic periods.
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Figure 2: The actual and the predicted traffic rate using the proposed model over a time window of 250 frames (a) for I frames.
(b) for P frames and (c) for the B frames.
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Figure 3: The actual data versus the predicted ones. (a) I frames. (b) P frames. (c) B frames.

1000 1020 1040 1060 1080 1100 1120
5

10

15

20

25

30

35

40

Frame Number

B
it 

R
a

te
 (

M
bi

ts
/s

)

Actual Data

The Proposed Model

Method of [9]

2000 2020 2040 2060 2080 2100 2120

5

10

15

20

25

30

Frame Number

B
it 

R
a

te
 (

M
bi

ts
/s

)

Actual Data

The Proposed Model

Method of [9]

1500 1520 1540 1560 1580 1600 1620

2

4

6

8

10

12

14

Frame Number

B
it 

R
a

te
 (

M
bi

ts
/s

)

Actual Data

The Proposed Model

Method of [9]

(a) (b) (c)

Figure 4: A rate by rate comparison of the proposed model with an RARMA model implemented as in [9] over a time window of
250 frames in case of (a) I frames, (b) for P frames and (c) B frames.

Prediction Error

Sequences
 I - Frame

(%)
P- Frame

(%)
B - Frame

(%)
The proposed RNAR Model 1.12 1.89 2.81
NARMA Model 7.12 8.55 10.02
NAR Model 9.36 10.87 11.88
RAR Model 12.58 13.42 14.75

Table I: Comparison of frame losses for the actual data of Source3 and the proposed model at different buffer sizes and utilization
degrees.


