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ABSTRACT

We explore three recursive Bayesian algorithms for the
passive location of a stationary ground-based emitter using
bearing measurements obtained by a flying platform. The
passive location of emitters is a frequent requirement in
rescue missions. The algorithms that we consider are a
particle filter, the unscented Kalman filter (UKF) and the
extended Kalman filter (EKF). They require increasingly
greater simplification to the models in the passive location
problem. The particle filter is a straightforward
formulation based on rejection sampling, requiring the
measurements to be conditionally independent and the
likelihood to be bounded with known bound. Apart from
these requirements, which are satisfied for the problem, no
further simplification is needed. The UKF preserves the
nonlinearities in the models but approximates the posterior
distribution at each time step by a Gaussian distribution.
The EKF also assumes a Gaussian distribution, but further
linearizes the models so that Gaussianity is preserved
under the simplified linear models. Our Monte Carlo
simulation results show that the recursive particle filter
converges more quickly than the UKF and EKF, and
performs better in terms of both point estimation and
distribution estimation.

1. INTRODUCTION

We consider the problem of passively locating a stationary
ground-based emitter using noisy bearing (azimuth and
elevation) measurements obtained by a flying platform.
We denote the emitter’s location, with respect to a fixed
reference frame, by T

eee zyx ),,(=θ . The platform
position is assumed to be known and is denoted, with
respect to the same reference frame, by T

kkkk zyx ),,(=ψ ,
at time-step k. The bearing vector of the emitter at time-
step k is T

kkk ),( βαγ = , where α is the relative azimuth,
and β the relative elevation, of the emitter with respect to
the platform, i.e.
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The measurement vector is
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where ),0(~
kwk Nw Σ , i.e. the measurement noise is

assumed to be independent and distributed according to a
normal distribution with mean zero and covariance matrix,

kwΣ . Our goal is to recursively estimate θ using ,...ˆ,ˆ 21 γγ  .

2. BAYESIAN SOLUTION AND ALGORITHMS

Using kΓ̂  to denote the set of measurements, }ˆ,...,ˆ{ 1 kγγ ,
from time-steps 1 to k, the Bayesian solution to our
problem at time-step k is the conditional density,

)ˆ|( kp Γθ . Bayes’ Theorem tells us how this conditional
density can be updated recursively:

)ˆ|()|ˆ()ˆ|( 1−Γ∝Γ kkk ppp θθγθ . (3)
Unfortunately, the nonlinear relationship between the
emitter’s coordinates and its bearings, given in (1), makes
it difficult to implement this recursion exactly. This
compels us to consider implementable approximations to
(3). We explore three such approximations, which require
different extents of simplification on the models in (1) and
(2). First, preserving the models as they have been
defined, we develop a particle-based algorithm that
utilizes rejection sampling. Next, we consider the
unscented Kalman filter (UKF) [4], which preserves the
nonlinearities in (1), but approximates )ˆ|( kp Γθ  by a
Gaussian at every time-step. Finally, we look at the
extended Kalman filter (EKF), which linearizes the model
in (1) by Taylor expansions, so that the Gaussianity in (2)
is preserved under the simplified linear model.



2.1. Recursive Particle Filter

The particle approximation to (3) represents )ˆ|( 1−Γkp θ  by
a collection of n particles, },...,{ ,11,1,1 nkknk −−− =Θ θθ , and
formulates a recursion that gives a new set of particles,

},...,{ ,1,, nkknk θθ=Θ , which represents )ˆ|( kp Γθ  (see [1],
[3]). Here, we develop a recursion based on rejection
sampling, that requires the noise sequence, ,..., 21 ww , to
be independent, and the likelihood, )|ˆ( θγ kp , to be
bounded, with known bound, kλ . Let

)ˆ|()|ˆ()ˆ|(~
1−Γ=Γ kkk ppp θθγθ , which is )ˆ|( kp Γθ  known

up to normalizing constant. Then since

kk
k

k p
p
p λθγ

θ
θ ≤∝

Γ
Γ

−

)|ˆ(
)ˆ|(

)ˆ|(~

1

, (4)

one way to get a particle from )ˆ|( kp Γθ  is to use rejection

sampling is to generate a particle from )ˆ|( 1−Γkp θ  and
then accept it with probability

k

k
k

p
λ

θγθπ )|ˆ(
)( = . (5)

However, we cannot generate directly from )ˆ|( 1−Γkp θ
and must therefore approximate it by a density that we can
generate from. We use the Gaussian kernel density
estimator with shrinkage of kernel locations [5],
constructed from nk ,1−Θ :
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where ),|( Σ⋅ µφ  denotes the Gaussian density with mean

vector, µ, and covariance matrix, Σ, and 1
ˆ

−Σ k  is the sample
covariance matrix for nk ,1−Θ , and where the Scott

bandwidth matrix, 1
72 ˆ

−
− Σ kn , has been used for the kernel.

The kernel locations are
1,1,1 ˆ)1( −−− −+= kjkjk µδδθθ , (7)

where
721 −−= nδ , (8)

and 1ˆ −kµ  is the sample mean for nk ,1−Θ , so that the mean
and covariance of the fitted kernel density estimator match
those of nk ,1−Θ .

Suppose, at time-step k, we have nk ,1−Θ

approximately distributed according to )ˆ|( 1−Γkp θ . Our
recursive particle algorithm proceeds as follows:

Set j = 1
While j ≤ n

Generate )ˆ|(ˆ~ 1−Γkp θθ  and U~U(0,1)
If kU π<  then θθ =jk ,  and j = j + 1

In the case of the measurement model in (2), where the
measurement noise is additive and Gaussian with mean
zero and known covariance matrix, 

kwΣ ,
211 ||)2( −− Σ=

kwk πλ , (9a)
and so the acceptance probability is simply
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2.2. Unscented Kalman Filter

Whilst a particle filter uses a large number of random
particles to represent a distribution, the UKF can be
thought of as using a small number of deterministic
particles, known as sigma points, to obtain an appropriate
Gaussian approximation for the distribution. Let 1−kµ  and

1−Σk  be the mean vector and covariance matrix,

respectively, for )ˆ|( 1−Γkp θ , and let 1ˆ −kµ  and 1
ˆ

−Σk  be the
UKF’s estimates of these quantities. At time-step k, the
UKF generates a set of (2d + 1) sigma points from 1ˆ −kµ
and 1

ˆ
−Σk , and uses them to estimate kµ  and kΣ  for

)ˆ|( kp Γθ , where d is the dimension of θ.
We shall consider the UKF with two design

parameters [4]: )1,0(∈a  determines the spread of the
sigma points about the mean, and b is a parameter for
incorporating prior knowledge of the distribution – for a
Gaussian distribution, b = 2 is optimal. Let

dac )1( 2 −= , (10)

dc +=η , (11)
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for dj 2,,1�= . In the context of our problem, the UKF
recursion at time-step k is

1. Calculate the sigma points:

1
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where jk )ˆ( 21
1−Σ  denotes the j-th column of the matrix

square-root of 1
ˆ

−Σk .



2. Calculate the weighted mean and covariance of the
sigma points:
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3. Calculate the predicted measurements from the sigma
points:
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4. Calculate the weighted mean and covariance of the
predicted measurements:
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5. Calculate the weighted covariance between the sigma
points and the predicted measurements:
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6. Calculate the Kalman gain:
1
***

−ΣΣ=
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7. Estimate the mean of )ˆ|( kp Γθ :
)ˆ(ˆ **
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µγµµ −+= (24)

8. Estimate the covariance of )ˆ|( kp Γθ :
T
kkk KK
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2.3. Extended Kalman Filter

Since the emitter is stationary, the state evolution matrix is
simply an identity matrix and the process noise is zero. By
letting
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be the Jacobian matrix of the measurement function,
evaluated at 1ˆ −= kµθ , the EKF recursion for our problem,
at time-step k, is

1. Compute the Kalman gain:
1

11 )ˆ(ˆ −
−− Σ+ΣΣ= T

kkkw
T
kkk GGGK

k (27)

2. Estimate the mean of )ˆ|( kp Γθ :
)],ˆ(ˆ[ˆˆ 11 kkkkkk gK ψµγµµ −− −+= . (28)

3. Estimate the covariance of )ˆ|( kp Γθ :

1
ˆ)(ˆ

−Σ−=Σ kkkk GKI . (29)

3. RESULTS

Monte Carlo simulation results for the Bayesian
algorithms are shown in Figures 1 and 2. The results are
for 100 Monte Carlo realizations, with 30 time-steps per
realization. In Figure 1, the conditional mean, θ̂ , is taken
as the point estimate of emitter location, θ, at each time-
step and for each of the three algorithms. The root-mean-
squared (RMS) error is the square root of the mean (over
100 realizations) of the squared Euclidean distance
between θ̂  and θ. For each time-step, bootstrap bias-
corrected and accelerated (BCA) intervals [2] with 90%
confidence level are constructed for the RMS errors. Each
bootstrap interval is represented by an error bar, with a dot
indicating the RMS error. At each time-step, the error bars
are drawn slightly displaced in time to enhance visibility.

Figure 1(a) shows the bootstrap intervals for time-
steps 2-15, and Figure 1(b) for time-steps 16-30. The RMS
error is shown as a percentage of the range between the
platform and the emitter. All three algorithms were
initialized by a common procedure using the measurement
from the first time step. The smaller RMS error of the
recursive particle filter (RPF), compared to both the UKF
and EKF, is clearly evident.

Figure 2 shows the mean probability mass, over the
100 realizations, that each algorithm places in a
rectangular box centered at the true emitter position. Once
again, we show the bootstrap BCA intervals with 90%
confidence level in the form of error bars, with the mean
probability mass marked by a dot. Whilst the RMS error
indicates the point estimate performance of the algorithms,
the mean probability mass provides an indication of their
distribution performance. The shape and size of the box
are completely arbitrary and a different choice can be used
depending on operational considerations. The results show
that the RPF places significantly more mass close to the
true emitter location than either the UKF or the EKF.

Taken together, the results indicate quicker
convergence of the RPF and better performance in terms
of both point estimation and distribution estimation. The
results show the UKF performing only slightly better than
the EKF, suggesting that the nonlinearities for the scenario
considered must have been mild. Nevertheless, the RPF
still managed to exhibit quicker convergence and better
performance.

Although the UKF and EKF appear to perform quite
well, there are theoretical and practical difficulties arising
from their use. For instance, by considering θ in natural
space, its support there may not be compatible for
Gaussian distributions. This means that the UKF and EKF
can, and do, put probability mass in regions where it is
physically impossible for the emitter to be located. We
considered transforming θ to a space where the support
was compatible but found the Gaussian fit in the



transformed space to be worse than in the natural space.
Thus, with the UKF and the EKF, it is difficult to impose
constraints on the support of θ, which is something that
can be easily done with a particle filter. Such constraints
can be exploited to further improve the estimation of
emitter location.

The computational complexity of the UKF is
comparable to the EKF, but the RPF requires several
orders of magnitude more computations than the UKF.
Nevertheless, with the computing power that is available
today, real-time implementation of the RPF is not
impossible if the data rate is not too high.

4. CONCLUSION

We have formulated a recursive particle filter based on
rejection sampling and have obtained simulation results
showing that it converges more quickly than the UKF and
EKF, and performs better in terms of both point estimation
and distribution estimation. We are conducting more
extensive studies with the algorithm, and are exploring

how it can exploit constraints on the support of θ as well
as other forms of prior information.
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    (a)                                                                                                               (b)
Figure 1. 90%-Bootstrap BCA intervals for RMS error with 100 realizations and 5000 bootstrap replications, for time-steps (a) 2-15, and (b) 16-30.

RPF – left error bar; UKF – middle error bar; EKF – right error bar.

Figure 2. 90%-Bootstrap BCA intervals for mean probability mass in a rectangular box centered at the true emitter position, with 100 realizations and
5000 bootstrap replications: RPF – left error bar; UKF – middle error bar; EKF – right error bar.
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