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ABSTRACT

The linear prediction coding of speech is based in the
assumption that the generation model is autoregresive. In
this paper we propose a structure to cope with the
nonlinear effects presents in the generation of the speech
signal. This structure will consist of two stages, the first
one will be a classical linear prediction filter, and the
second one will model the residual signal by means of
two nonlinearities between a linear filter. The coefficients
of this filter are computed by means of a gradient search
on the score function. This is done in order to deal with
the fact that the probability distribution of the residual
signal still is not gaussian. This fact is taken into account
when the coefficients are computed by a ML estimate.
The algorithm based on the minimization of a high-order
statistics criterion, uses on-line estimation of the residue
statistics and is based on blind deconvolution of Wiener
systems [1]. Improvements in the experimental results
with speech signals emphasize on the interest of this
approach.

1. INTRODUCTION

It is known that in the speech production mechanism
there are present several nonlinearities [2]. These non-
linealirities have been exploited for speech coding [3] [4]
[5] [6] [7], in order to improve the prediction gain. In this
paper we propose a new approach based in two prediction
stages. The first stage (see figure 1), removes all the
components that can be predicted by a linear model, and
in the second stage, the signal is filtered after being
compressed by a nonlinear function g(.) and then, goes
through another nonlinear function h(.) (see figure 2).
The idea of this second stage is to concentrate on the low
energy components of the residual signal, which still have
short term dependencies.

2. CLASSICAL LPC

The classical LPC methods are based on the
minimization of a mean square error, defined as the
difference between the input signal ( )kx  and the

predicted signal

)1()]([)( −= kxzwky , where )(zw  is a L -th order causal

finite impulse response filter, i.e. a filter whose
entries 0=iw  for 1,,0 −∉ Li K . The block diagram of a

linear predictor is shown in figure 1.
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Figure 1: Block diagram linear prediction coding system.

Denoting )()]()([ lRlkxkxE xx=− , the cost function

reduces to:

( )[ ] ( ) ( )

( )∑∑

∑
−

=

−

=

−

=

−+

++−==

1

0

1

0

1

0

2 120

L

m

L

n
xxnm

L

n
xxnxx

nmRww

nRwRkeEJ

This estimation can be viewed as a maximum likelihood
(ML) estimate in the special case of independent and
identically distributed (iid) gaussian error: in fact, first
consider only the prediction at time k . Taking into
account the relation )()()( kekxky −= , and denoting

(1)



(.)Ep  the probability density function (pdf) of the residue

)(ke , the log-ML estimation is :
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Assuming that the error )(ke is a gaussian zero mean

random variable, the Maximum Likelihood estimation is:
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As it is well known, in the gaussian case, asymptotically,
the ML is nothing but the minimum mean square error
(MMSE) estimate.
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Figure 2: Block diagram of the second stage.

3. SCORE FUNCTION METHOD FOR THE LPC
COEFFICIENTS

Unfortunately, if the error is not gaussian, the MMSE
estimate is no longer equal to the ML estimate, as showed
in [7]. In fact, from  (2), one can compute the ML
equation by deriving the equation with respect to the
entries jw :
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where (.)Eψ  denotes the derivative of  (.)ln Ep , the so-

called score function. Consequently, asymptotically, for
any error distribution, the ML estimate of jw ,

,1,,0 −= Lj K  is equivalent to the equation set:

[ ] .1,,0,0)1())(( −==−− LjjkxkeE E Kψ

Basically, the score function is a nonlinear function,
except in the gaussian case. In these case, ( ) eeE −=ψ .

Then, equation (5) prove that the optimal ML estimate
involves higher (than 2) order statistics, except in the
gaussian case.

4. SCORE FUNCTION METHOD FOR THE
NONLINEAR STAGE

As can be seen in figure 2, now the error sequence is
defined as:
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where f(k) are the coefficients of the LP filter, and g(.),
h(.) are nonlinear functions. We will define the auxiliary
variables:
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therefore, ( ) ( )( )nwhny = .

In order to compute de minimum of the cost function we
need the derivative of (6) with respect to the coefficients
fk:
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Consequently, asymptotically, for any error distribution,
the ML estimate of jf , ,1,,0 −= Lj K  is equivalent to

the equation set:
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As we can see, comparing eq. (8) with eq.(5), we
introduce high-order statistics in the equation set by
means of nonlinear functions g(·) and h(·).
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The update of the coefficients f is done by means of a
gradient search, i.e.
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5. SELECTION OF THE NONLINEAR FUNCTIONS

As nonlinear functions we tried squashing functions and
functions that expanded the input. From several
combinations we found that using squashing functions for
both nonlinearities yielded the best results.
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Figure 3: Squashing function used as nonlinear function.

The exact form of the squashing function was not
important. In the results presented in next section we
used the tanh(k(.)) (see figure 3), with a gain k, selected
to saturate at half a standard deviation of the input frame.

6. EXPERIMENTS

We compared the LPC gain obtained with one stage
(LPC-1), a two stages modeled with the structure
proposed in figures 1 and 2 (NLPC-2), and for reference
purposes, also a second stage that consisted of an lpc of
the same order than the nonlinear stage (LPC-2).

As input speech signal we use the spanish sentence “el
golpe de timón fue sobrecogedor”, uttered by eight
different speakers (four males and four females). The
signal, was sampled at 8KHz.

The performance criterion used to evaluate the results is
the prediction gain, defined as:
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In the first experiment (figure 4) we compare the
prediction gain for the first stage (order 12), with the
prediction gain when another linear prediction stage of
order 12 is used as a second stage, and the gain with the
structure proposed in section 4. In order to compare the
results, we plot the mean of the prediction gain for the
eight speakers, and the margin between one standard
deviation for each case. As can be seen, the use of a
nonlinear structure yields a significative improvement
with respect to the structure of two linear predictors
(which are equivalent to a simple linear prediction stage
of order 24). In this experiment we used a frame of 256
samples.

The system also was not very sensitive to changes in the
length of the filter in the second stage. This is shown in
figure 5, where we can see that the prediction gain, in the
nonlinear case, degrades slowly as the length is
diminished. Also the performance of a nonlinear second
stage is better than a linear stage for all the orders
considered. The performance degrades for orders lower
than 5.

We also studied the effect of the frame length on the
prediction gain. The results are summarized in figure 6.
It can be seen that for a margin that goes from 256 to 64
samples, the results are consistent, and the structure
proposed in this paper outperforms the linear one. It can
be seen that the prediction gain is almost the same for all
the frame lengths, and in all cases, the confidence margin
of the results show that the improvement is significative.
Also we can see a slight increasing trend in the nonlinear
prediction gain as the frame length diminishes.
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Figure 4: Prediction gain for the first stage (12LPC-1),
the first stage and the second linear stage (12LPC-2), and
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the first stage and the second nonlinear stage (12NLPC-
2).

7. SUMMARY

We have presented a new structure for performing speech
linear prediction, which gives better results than the
classical LPC methods.  The structure is based in two
stages, the first removes the linear components of the
signal, and the second concentrates in predicting the low
energy component of the residual.
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Figure 5: Effect of diminishing the order of the (LP)
second filter.

The method is based on a criterion which requires the
knowledge of error pdf, or more precisely of the score
function. Implicitly, this criterion involves higher order
statistics, which can be chosen optimally with a good
estimation of the score function, e.g. computed from
kernel estimators of the error pdf. Also we present a
method for computing the coefficients of a filter between
two nonlinearities, for the general case, of arbitrary pdf,
and form of the nonlinerities (the only restriction is that
they should be invertible).

Real speech signal experiments show that this method is
always better than LPC method, for different orders of the
second stage, and for different frame lengths.
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Figure 6: Comparison of the prediction gain for different
frame lengths.
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