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ABSTRACT

Given a multiple access channel, it is well known that the
criterion of maximum sum-rate, under the constraint of a
given transmitted power for each user, leads to the multi-
user water-filling solution. However, maximizing the sum-
rate may yield very low (even null) rates for users experi-
encing the deepest fades. Our goal is to introduce a fairness
principle so that all users can transmit at the same rate. The
question is then what is the maximum value of such a com-
mon rate, under the constraint of a fixed total transmitted
power. In this paper, we will show how to solve this prob-
lem, providing this maximum common rate and the power
allocation and code selection necessary to achieve it. In par-
ticular, we will show that in case of transmission over linear
time-invariant channels, the solution for the finite block case,
using cyclic prefixes, is given by an OFDMA strategy, with
a proper power and frequency distribution among the users.

1 System Model and Problem Formulation

The full characterization of a multiple access channel, as
far as the maximum reliable user rates are concerned, re-
quires the determination of the capacity region. In case of
linear time-invariant channels, additive Gaussian noise, and
fixed average power budget for each user, the capacity re-
gion for the multiple access channel was initially given in
[2]. Even though the capacity region describes the situation
completely, nevertheless it is important to single out a few
performance parameters to characterize a given channel. For
this reason, several works concentrate on the sum-rate, as a
single performance parameter. In [2] it was shown that the
optimal coding strategy for maximizing the sum of the rates
in the multiple access channel, leads to a frequency division
multiple access (FDMA) strategy where each frequency is
assigned to the user who has the maximum gain over that
frequency, after a proper scaling necessary to enforce the de-
sired transmission power to all users. The power allocation
within the band assigned to each user is then carried out
according to the water-filling algorithm. Quite recently, in
[3] an iterative algorithm was given that is able to provide
the optimal codes for the multiple access channel, without
making any specific assumption about the channel, under
the constraint of a fixed average power for each user. In [4]
it was proved that in case of block transmission using cyclic
prefixes of length at least equal to the channel order, the
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algorithm of [3] leads to an Orthogonal Frequency Division
Multiple Access (OFDMA) strategy, where distinct users get
non-overlapping frequency bins (or at most they have only
one common frequency bin).

In the algorithms given in [3], [4], the optimization cri-
terion is the maximization of the sum-rate. As such, the
algorithms may assign very low (even null) rates to the users
experiencing the strongest attenuation. The aim of this pa-
per is to propose a method which avoids the possibility of
such an unfair rate distribution. Different from [3], [4], we
relax the condition on the power budget, as we put a con-
straint only on the global available power, and then we find
out the set of powers and codes that lead to the same rate
for all users. Instead of characterizing the performance of a
multiple access channel in terms of sum-rate, we use the com-
mon rate, so that we are only interested to powers and codes
that yield the same rate to all users. Then we optimize the
performance of our system by looking for the power distribu-
tion and codes selection which yield the maximum common
rate, for a given global available average power.

We consider block transmission over frequency-selective
time-invariant channels, modeled as FIR filters of maxi-
mum order L. We denote by sk(n) the information symbol
stream of the k-th user and with Q the number of simul-
taneously active users. Each stream is parsed into blocks
of M symbols sk(n) := [sk(nM), . . . , sk(nM + M − 1)]T ,
with k = 1, . . . Q. To avoid InterBlock Interference (IBI), we
introduce, as in any OFDM system, a cyclic prefix (CP) of
length L at the beginning of each transmitted block1. Adopt-
ing linear (redundant) precoding, the n-th block x̄k(n) :=
[xk(nN), . . . , xk(nN+N+L−1)]T transmitted from the k-th
user is related to sk(n) by the relationship x̄k(n) = F̄ ksk(n),
where F̄ k is an (N + L)×M full column rank matrix, with
N ≥ M . The first L rows of F̄ k are equal to the last L ones
and thus they take into account the CP. At the receiver, the
IBI is eliminated by simply discarding the first L samples
of the received block and the N × 1 IBI-free received vector
y(n) can be written as:

y(n) =

QX
k=1

HkF ksk(n) + �(n) (1)

where F k is the N × M coding matrix given by the lower
N rows of F̄ k; Hk, thanks to the insertion of the CP, is

1Assuming a quasi-synchronous model, the baseband channel
order is L = d(τmax

d + τmax
k )/Tce, where τmax

d is the maximum
delay spread among the channels and τmax

k is the maximum rel-
ative delay among the users.
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an N ×N circulant Toeplitz matrix with entries Hk(i, j) =
hk((i − j) mod N); �(n) is white additive Gaussian noise
with covariance matrix Rη

.
= σ2

nIN . We assume also, with-
out any loss of generality, that the information symbols sk(n)
are uncorrelated (any correlation of sk(n) could in fact be
taken into account by including a proper whitening matrix in
F k), with covariance matrix Rsk = IM . Symbols transmit-
ted by different users are statistically independent. Under
the hypothesis of additive Gaussian noise and the constraint
on the average transmitted power, mutual information is
maximum when the symbol vectors sk(n) are Gaussian ran-
dom variables.

Assuming that all channels {Hk}Q
k=1 are perfectly known

to both transmitters and receivers, the mutual informa-
tion I(XQ;y) between all the transmitted blocks XQ ≡
{x1(n), . . .xQ(n)} and the received vector y(n) is (see,

e.g. [1]): I(XQ;y) = 1/N
���PQ

k=1HkRxkH
H
k +Rη

��� / |Rη|,
where the symbol |A| denotes the determinant ofA. Because
of the independence between the symbols transmitted from
different users, the maximum sum of achievable users’ rates
can be computed as the maximum of I(XQ;y). To make
evident the role of the power pk and the code matrix F k

assigned to each user, in the following we use the normalized
coding matrices Gk = F k/

√
pk, such that tr{GGH} = 1

by construction, whereas tr{FFH} = pk. Therefore, the
sum-rate maximization problem (SRMP) with unknowns

{Gk}Q
k=1, subject to the power constraint tr{GkGH

k } ≤ 1,
with k = 1, 2 . . . Q, can be formulated as follow:

{Gk}Q
k=1 = argmax log

���PQ
k=1 pkHkGkGH

k HH
k +Rη

���
|Rη|

subject to tr{GkGH
k } ≤ 1, k = 1 . . . Q.

(2)

The solution of the SRMP (2) was given in [3], where it was
shown that the optimal coding matrices Gk can be found
jointly as the single-user water-filling solutions correspond-
ing to the equivalent channels characterized by the matrix
Hk and having as additive noise the sum of the receiver noise
plus the interference from all the users (except the k-th one)

wk(n)
.
=
PQ

j 6=k

√
pjHjGjsj(n) + �(n). Since the optimal

code for each user depends on the codes of all other users,
which play the role of interference, the solution can be found
only acting jointly on all coding matrices. The iterative al-
gorithm able to provide these optimal matrices was given
in [3], where it was also proved that the algorithm always
converges towards the unique absolute maximum. In case of
transmission over time-invariant channels, the solution for
each user is the classical water-filling solution corresponding
to the case of additive colored noise and it can be expressed
as follows. We start with the eigen-decomposition (see also
[4]):

HH
k R

−1
wk
Hk = (V k

eV k)

�
Λk 0
0 0

�
(V k

eV k)H , (3)

where V k, eV k are respectively N × r and N × (N − r) para-
unitary matrices, with r = rank(HH

k R−1
wk
Hk) ≤ N , and Λk

is an r×r diagonal matrix with entries λk(i, i). The optimal
code matrices F k maximizing the sum-rate are (see e.g. [1]):

F k = V kΦk, (4)

where Φk is a diagonal matrix whose entries are such that

Φ2
k(i, i) = max

 
Pk +

PM̄k
j=1 1/λk(j, j)

N
− 1

λk(ii)
, 0

!
(5)

and M̄k is such that
PM̄k

j=1 Φ2
k(j, j) = pk. In [4] it is shown

that the orthonormal matrix V k = (V k
eV k) is W ∀k ∈

[1, . . . Q], with {W }kl = exp(j2πkl/N)/
√

N and the precod-
ing matrix F k in (4) assumes the form F k = WP kΦk, where
P k is a permutation matrix such that WP k contains the
eigenvectors corresponding to the eigenvalues of the N ×N
diagonal matrix Φk = diag ([Φk]11, . . . , [Φk]rr, 0, . . . , 0) ar-
ranged in decreasing order. Therefore the transmission strat-
egy {F k}Q

k=1 maximizing the sum-rate is the multi-carrier
one, with proper power loading across the sub-carriers.

2 Water-Filling with Fairness Constraint

The iterative multi-user water-filling algorithm (IMUWFA)
proposed in [3] provides the codes yielding the maximum
sum-rate, after a few iterations. However, this solution
might give rise to a completely unfair distribution of the
rates across the active users. In particular, the users with
the strongest channel attenuation could get a very low, or
even null, rate. To establish a fairness principle while, at the
same time, looking for a single parameter characterizing the
multiple access channel, we formulate the optimization prob-
lem differently. We relax the constraint about the available
power, as we impose only that the global available power
(the sum of the user powers) be less than a given value and
we look for the distribution of powers and codes which lead
to the same rate for all active users. This common rate, as
opposed to the sum-rate, is thus our performance parameter.
Our goal is then to find out the power and codes distribution
which maximize the common rate. Different from [3], [4],
our algorithm exploits the flexibility in assigning the power
to each user, within the only constraint of a maximum global
available power, to enforce the same rate to all users and thus
our optimization involves the selection of powers and codes
of each user jointly. Stated in mathematical terms, denoting
with Rc the common rate, which is a function of the power
pk and the normalized coding matrices Gk assigned to each
user, we look for the powers and coding matrices such that

{p∗1, · · · , p∗Q;G∗1, · · · ,G∗Q} = argmax{Rc}

subject to
PQ

k=1 p∗ktr{GkGH
k } ≤ Ptot,

(6)

where the stars indicate the optimal solution. Clearly this
problem is nonlinear with a (possibly) high number of un-
knowns. Therefore, its numerical solution can be very com-
plicated. However, there is a crucial remark which simplifies
the problem considerably. Among all possible power distri-
butions, satisfying the global power constraint, there is cer-
tainly a non-empty set of power distributions such that the
rates assigned to different users are all equal to each other.
Within this set, the coding matrices yielding the maximum
common rate must coincide with the coding matrices giving
the maximum sum-rate. In fact, when the rates are all equal
to each other, maximizing the common rate Rc is clearly
equivalent to maximizing QRc, that is the sum-rate. This
remark, although trivial, yields a great simplification in the
solution of our problem, because it implies that if we know
the optimal powers, we can derive the optimal codes using
for example the IMUWFA ([3]. On the other hand, we know
that, for any given power distribution among the users, the
rates obtained with the IMUWFA are determined uniquely.
Hence, given any iterative method acting on the power dis-
tribution in order to reduce the difference between the user
rates, if it converges, we are sure that it converges towards
the unique solution. Our algorithm proceeds then through
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Figure 1: Channel transfer functions (upper curves) and op-
timal user PSD’s without fairness (top figure) and with fair-
ness constraint (bottom figure).

the following steps.
Algorithm

- Start with any power distribution p(1) ≡ {p1(1),

. . . , pQ(1)} such that
PQ

k=1 pk(1) = Ptot and set n = 1;

- Repeat

i) Compute the code matrices Gk(n), for k = 1, . . . , Q
yielding the maximum sum-rate, corresponding to
the set of powers p(n), using the IMUWFA [3];

ii) Evaluate the rates Rk(n) for each user
and compute the mean rate R̄(n) :=PQ

k=1 Rk(n)/Q and the dispersion rate

σR(n) :=
qPQ

k=1(Rk(n)− R̄(n))2/Q;

iii) associate to each user its own rate distance with
respect to the average rate ∆k(n) := Rk(n)−R̄(n)
and sort the users in decreasing order according to
the distribution of |∆k(n)|;

iv) update the powers vector in order to reduce the
rate dispersion:

pk(n + 1) = pk(n)− µ
Rk(n)− R̄(n)

R̄(n)
, k = 1, . . . , Q− 1;

pQ(n + 1) = Ptot −
Q−1X
k=1

pk(n + 1);

v) set n = n + 1;

- until |Rk(n)− R̄(n)| < ε, ∀k.

In step iv) we update the powers using an updating term
which is directly proportional, for each user, to the distance
between the rate of that user and the average rate. The
power of the Q-th user is updated in order to enforce the
global power constraint. The algorithm stops when the dif-
ference between the rate of any user from the average rate
falls below a given threshold ε. In the next section, we will
show the performance of our algorithm using different power
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Figure 2: Rates (upper curves) and powers (lower curves) of
each users, vs. iteration index.

updating strategies and we will show that all strategies lead
to the same final results, as the only difference is convergence
time. It is important to emphasize the role of step i), where
the code matrices are computed, for any power distribution,
in order to maximize the sum-rate. This step insures that if
the algorithm converges, the final result is not only common
rate, but maximum common rate.

3 Performance and Conclusions

We have simulated our algorithm using the following system
configuration. The number of active users is Q = 3; the
length of the transmitted blocks is N = 64 and the maxi-
mum number M of information symbols in each coded block
is M = N ; the channels are simulated as FIR filters of order
L = 10, whose taps are iid complex Gaussian random vari-
ables with zero mean and unit variance; the additive noise
�(n) is assumed to be drawn from a complex white Gaus-
sian random process with zero mean and unitary variance
for each component. In Fig.1 we compare our algorithm
(bottom figure) with IMUWFA (top figure). In each plot
we report the square modulus of the channels transfer func-
tions (upper curves) and the optimal power spectral densi-
ties (PSD) (lower curves). The total power is the same for
both algorithms and IMUWFA assigns the same power to all
users. Interestingly, in both cases the solution is an OFDMA
scheme, where different users get non-overlapping frequency
bands, and within each band the power distribution goes ac-
cording to the water-filling principle. We can observe that
our algorithm gives some extra band to the most penalized
user (the one with dashed line), with respect to IMUWFA.
To quantify the rate dispersion as a function of the iteration
index, in Fig.2 we report the rates and powers of each user
as a function of the iteration index, for the same channel
configuration as in Fig.1. At the beginning of the iterations,
we assign the same power to all users and we can clearly see
that one user gets less than 60 percent of the rates assigned
to the other users. Then, after a few iterations, the pow-
ers assigned to each user changes in order to give the same
rate to all users. To analyze the convergence properties of
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Figure 3: Rate of three users vs. iteration index, using ran-
dom power initialization.
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Figure 4: Powers of three users vs. iteration index, using
random power initialization.

our algorithm, in Fig.3 and Fig.4 we plot the rates (upper
curves) and the powers (lower curves) of three users as a
function of the iterations, obtained running our algorithm
and using 5000 independent random initial power distribu-
tions p(0). From these figures we can clearly observe that
our algorithm converges always to the same common rate
Rc, independently of the initial power allocation, and also
the final powers assigned to the three users are always the
same. Finally, in Fig. 5 we compare three different strategies
for updating the power distribution in order to enforce the
same rate for all users: i) the method described in the above
algorithm (dashed and dotted line); ii) a method updating
the powers in order to maximize the geometric mean of the
rates, for a given sum-rate (solid line) - it is well known in
fact that the maximum of the geometric mean of a set of
unknowns, under the constraint of a given sum, is achieved
when all the unknowns assume the same value; iii) a method
updating the powers by subtracting the power from the user
with the highest ∆k(n) in order to make its rate equal to the
average rate, at that iteration, and adding this same power
to the user with the lowest rate, to respect to power con-
straint. Clearly, the ordering of the users in step iii) plays a
fundamental role in this updating strategies. From Fig. 5,
we can check that indeed the only difference between the dif-
ferent methods is convergence time, but not the final values,
both in terms of powers and rates. In conclusion, the use of
the common rate as a unique performance parameter avoids
the possibility of unfair rate distribution among users. In
practice, different users might ask for different rate service,
in which case, the powers assigned to each user should vary
accordingly. Nonetheless, the maximum common rate is a
useful parameter to characterize a given network configura-
tion, irrespective of what the users are going to ask. In [1]
we have generalized the algorithm presented in this paper to
systems using multiple antenna transceivers.
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Figure 5: Comparison of three different power updating
strategies.
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