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ABSTRACT

We address the problem of carrier frequency offset (CFO)
synchronization in Orthogonal Frequency Division Mul-
tiplexing (OFDM) communications systems in the con-
text of frequency-selective fading channels. We consider
the case where the transmitted symbols are drawn from
Phase-Shift-Keying (PSK) constellations. We propose and
compare two algorithms to blindly estimate the CFO. The
first method exploits the constant modulus of the PSK
constellations. The second method exploits the finite al-
phabet property of these constellations. For both meth-
ods, using adequate parameterization, the estimation of
the CFO is decoupled from the estimation of the other sig-
nal parameters. The first method is shown to outperform
the second technique.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) mod-
ulation is attractive for high data rate wireless networks.
It has been adopted for a number of applications includ-
ing Digital Audio Broadcasting and local area networks
such as IEEE 802.11a. The main advantage of OFDM
systems is the reduced complexity of the equalizer at the
receiver, which allows for inexpensive hardware imple-
mentation. OFDM systems are however more sensitive to
Carrier Frequency Offset (CFO) than single carrier sys-
tems [1]. The presence of a CFO causes loss of orthogonality
between the sub-carriers, and leads to increased bit-error-
rate. Consequently, there has been considerable work in
the area of CFO estimation. A number of pilot-assisted
CFO synchronization techniques are available in the liter-
ature. Blind CFO synchronization is attractive because
it saves bandwidth, i.e., no training pilots are required.
A blind CFO estimator was recently proposed in [2] (see
also [3] for more details); this estimator, designed to work
with dispersive channels, exploits the fact that practical
OFDM systems are not fully loaded, i.e., the number of
information-bearing sub-carriers is smaller than the size
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of the FFT block. In [4], we extended this approach by
inserting a few extra nullsubcarriers in order to improve
performance and ensure identifiability.

Here, we consider the case where the transmitted sym-
bols are drawn form PSK constellations. We propose two
algorithms to blindly estimate the CFO. The first method
exploits the constant modulus of the PSK constellations.
The second method exploits the finite alphabet property
of these constellations. For both methods, using adequate
parameterization, the estimation of the CFO is decoupled
from the estimation of the other signal parameters.

2. SIGNAL MODEL

OFDM modulation consists of N (usually a power of 2)
sub-carriers, equi-spaced at a separation of ∆f = B/N ,
where B is the total system bandwidth. All sub-carriers
are mutually orthogonal over a time interval of length T =
1/∆f . Each sub-carrier is modulated independently with
symbols drawn from PSK constellations. Each OFDM
block is preceded by a cyclic prefix whose duration is
longer than the delay spread of the propagation channel,
so that inter-block interference can be eliminated at the
receiver, without affecting the orthogonality of the sub-
carriers. Practical OFDM systems are in general not fully
loaded in order to avoid aliasing. In this case, some of
the sub-carriers at the edges of the OFDM block are not
modulated; these sub-carriers are referred to as virtual
sub-carriers. Their number is dictated by system design
requirements and is, in general, about 10% of N . Let
N = {−N/2 + 1, ..., N/2} denote the entire set of sub-
carriers; also let Na = {−(Na − 1)/2, ..., (Na − 1)/2}
denote the Na-element set of active or modulated sub-
carriers (Na < N and Na is odd), and let Nv = N −Na
denote the set of Nv = N −Na virtual sub-carriers1.

At the receiver, the output of the matched filter is sam-
pled with period Ts = T/N . After discarding the cyclic
prefix, the complex envelope of the baseband received sig-

1The assumptions that N is even and Na is odd are not critical.



nal in an OFDM block can be described as

x(k) = ej2πkξo/N
∑

n∈Na

Hnsne
j2πkn/N + v(k) (1)

with k = 0, ..., N − 1, where {sn} are randomly drawn
fromM -PSK constellations, i.e. {exp(jπ(2i+1)/M), i =
0, ...,M − 1}; ξo (a real number, |ξo| < N/2) is the CFO
normalized to 1/T , Hn is the complex channel response
at the nth subcarrier frequency

Hn =

L∑

l=0

hle
−j2πln/N . (2)

Here, {hl} are the coefficients of the L + 1-tap channel,
and v(k) is additive noise which is assumed to be zero-
mean, uncorrelated, circularly symmetric and Gaussian
with variance σ2

v = E
{
|v(k)|2

}
.

3. CFO ESTIMATION EXPLOITING THE
CONSTANT MODULUS PROPERTY

Since {sn} is a constant-modulus sequence, Hnsn in eq.
(1) may be rewritten as Hnsn = |Hn|ejθn where θn is the
angle of Hnsn, |θn| ≤ π. It is worth noting that the Na

unknown parameters, {|Hn|} in (1), are parameterized by
only (L + 1) complex parameters which are the channel
coefficients {hl}. This property is the core of the follow-
ing algorithm.

We consider the parameters {|Hn|} and {θn} as un-
known deterministic parameters. Since the additive noise
is white, circularly symmetric and Gaussian, the ML esti-
mates of ξo, |H| = {|Hn|, n ∈ Na} and θ = {θn, n ∈
Na} are obtained by minimizing the L2 norm:

J(ξ, |H|,θ) =
N−1∑

k=0

∣∣∣∣∣x(k)− ej2πkξ/N
∑

n∈Na

|Hn|ejθnej2πkn/N

∣∣∣∣∣

2

.(3)

The criterion in eq. (3) can be rewritten as2

J(ξ, |H|,θ) =
N−1∑

k=0

|x(k)|2 +N
∑

n∈Na

|Hn|2

−2NR
[ ∑

n∈Na

|Hn|X(n+ ξ)e−jθn

]
(4)

where R [z] denotes the real part of a complex variable z
(I [z] denotes the imaginary part), andX(f) is the discrete-
Fourier transform of {x(k)} at frequency f/N

X(f) =
1

N

N−1∑

k=0

x(k)e−j2πkf/N .

2If m is an integer, we have that
∑N−1

k=0
ej2πkm/N = Nδ(m),

where δ(m) = 1 if m = 0 mod N , and δ(m) = 0 otherwise.

Setting ∂J/∂θn = 0, and assuming that |Hn| 6= 03,
the ML estimate θ̂n, satisfies

I
[
X(n+ ξ)e−jθ̂n

]
= 0, n ∈ Na (5)

which implies

θ̂n = arg{X(n+ ξ)} (6)

where arg{z} denotes the argument of a complex variable
z. Substituting θ̂n into eq. (4), the criterion to minimize
becomes

J(ξ, |H|) =
1

N

N−1∑

k=0

|x(k)|2 +
∑

n∈Na

|Hn|2

−2
∑

n∈Na

|Hn||X(n+ ξ)|

= JV SC(ξ) + JA(ξ, |H|) (7)

JV SC(ξ) =
∑

n∈Nv

|X(n+ ξ)|2 (8)

JA(ξ, |H|) =
∑

n∈Na

(|X(n+ ξ)| − |Hn|)2 (9)

where we have used Parseval’s theorem,

(1/N)
N−1∑

k=0

|x(k)|2 =
∑

n∈N

|X(n+ξ)|2 , ξ ∈ R , (10)

and the fact that Hnsn = 0 for n /∈ Na. The linear rela-
tions in eq. (2) should be taken into account in the mini-
mization of the above criterion.

Notice that JV SC is equivalent to the cost function
used in an existing blind CFO estimator [2], which ex-
ploits the virtual sub-carriers (Nv). The extra term JA
exploits the constant-modulus property of the transmitted
symbols. As for JV SC , minimizing JA alone provides a
consistent estimate of the CFO. Of course, JV SC (respec-
tively JA) is a valid criterion only if the system is not fully
loaded (respectively the constant-modulus property is sat-
isfied). There are however some identifiability conditions
associated with each criterion [5].

Note that JV SC is not a function of |H|. Therefore,
only JA needs to be considered in the minimization of J
with respect to |H|. This should be carried out under the
constraint

|Hn|2 =

L∑

l,p=0

hlh
∗
pe

−j2π(l−p)n/N (11)

which follows from (2). Constraint (11) states that |Hn|2,
n ∈ Na, are quadratic forms of the (L+ 1) channel coef-
ficients.

3if |Hn| = 0, θn becomes non-identifiable. A channel with L + 1
taps can have at most L zeros that coincide with the sub-carriers; clearly
Na > L ensures that Hn 6≡ 0, ∀n ∈ Na. With Na > L, all the Hn’s
cannot be zero; hence having Hn = 0 for some n ∈ Na will not affect
the final CFO estimator.



We modify JA as follows

J ′A(ξ, |H|) =
∑

n∈Na

(
|X(n+ ξ)|2 − |Hn|2

)2
. (12)

The motivation for using this modified criterion is given
next. Since our goal is to estimate the CFO by using a one-
dimensional optimization procedure, we need to eliminate
the |Hn|’s from the criterion in eq. (9). Towards this ob-
jective, we use |Hn|2 instead of |Hn| since the former can
be re-parameterized as follows:

|Hn|2 = cTnλ

where

cn = [1,
√
2 cos(2πn/N), · · · ,

√
2 cos(2πnL/N),√

2 sin(2πn/N), · · · ,
√
2 sin(2πnL/N)]T

λ = [g0,
√
2R [g1] , · · · ,

√
2R [gL] ,√

2I [g1] , · · · ,
√
2I [gL]]T

gi =
L−i∑

l=0

h∗l hl+i .

The sequence {|Hn|2} is then described by linear combi-
nations of the (2L + 1) elements of the parameter vector
λ. Note that both cn and λ are real-valued vectors. The
cost function J ′

A is no longer the ML cost, but it does lead
to a consistent estimate of ξo

By assumption we have that cTnλ 6≡ 0, ∀n ∈ Na;
further, from the definition of c, we have that

C2 :=
∑

n∈Na

cnc
T
n .

Setting ∂J ′A/∂λ = 0 yields the following closed-form
estimator

λ̂ = C
†
2

∑

n∈Na

|X(n+ ξ)|2cn , (13)

where † denotes the pseudo-inverse. Substituting ̂|Hn|2 =

cTn λ̂ into eqs. (7)-(9), we obtain the following criterion

J(ξ) = JV SC(ξ) + JCM (ξ) (14)

JV SC(ξ) =
∑

n∈Nv

|X(n+ ξ)|2 (15)

JCM (ξ) =
∑

n∈Na

(
|X(n+ ξ)| −

√
Y (n; ξ)

)2

(16)

where

Y (n; ξ) = cTnC
†
2

∑

n∈Na

|X(n+ ξ)|2cn . (17)

In the above criterion, JCM exploits the constant modu-
lus property of the symbol constellations. Using Parse-
val’s theorem, eqn. (10), the two criteria can be merged

together; after dropping constant terms, the pseudo-ML
estimator of the CFO is obtained as

ξ̂o = argmin
ξ

∑

n∈Na

(
Y (n; ξ)− 2|X(n+ ξ)|

√
Y (n; ξ

)

(18)
where recall that X(f) is the discrete Fourier transform
of x(k) in (1) at frequency f/N , and Y (n; ξ) is defined in
(17). We refer to the estimator minimizing JV SC as the
VSC-based estimator, which is equivalent to the estimator
in [2] for a specific choice ofNv . We refer to our estimator
in eq. (18) as the VSC&CM-based estimator.

In [5], the performance improvement of the VSC&CM-
based estimator over the VSC-based estimator was shown
to be more than one order of magnitude (i.e., more than
10dB!) provided Na À L (typically Na > 2L), which is
usually the case in practice.

4. CFO ESTIMATION EXPLOITING THE FINITE
ALPHABET PROPERTY

PSK constellations of size M satisfy the following prop-
erty:

sMn = 1.

Therefore, in the noiseless case and for the true CFO, we
obtain

[X(n+ ξo)]
M = HM

n =

[
L∑

l=0

hle
−j2πln/N

]M

which can also be rewritten as

[X(n+ ξo)]
M =

ML∑

l=0

ule
−j2πln/N = γHn u

where γn = [1, ej2πn/N , ..., ej2πMLn/N ]T and u is an
(ML+1)× 1 vector whose elements are functions of the
channel coefficients.

We now propose the following estimator

J(ξ) = JV SC(ξ) + wJ̄FA(ξ,u) (19)

J̄FA(ξ,u) =
∑

n∈Na

∣∣[X(n+ ξ]M − γHn u
∣∣2 (20)

where w is a weight parameter to control the contribution
of the finite-alphabet-based criterion with respect to that
of the VSC-based criterion. If ML+ 1 < Na, the param-
eter vector u can be uniquely determined as

λ̂ = Γ†
∑

n∈Na

[X(n+ ξ)]Mγn , (21)

where
Γ :=

∑

n∈Na

γnγ
H
n .



Substituting this estimate in eq. (22), the finite alphabet-
based criterion becomes

JFA(ξ) =
∑

n∈Na

∣∣[X(n+ ξ]M − Z(n; ξ)
∣∣2 (22)

where

Z(n; ξ) = γHn Γ
†
∑

n∈Na

[X(n+ ξ)]Mγn

The final VSC&FA-based estimator is thus obtained as

ξ̂o = argmin
ξ

[JV SC(ξ) + wJFA(ξ)] (23)

We have, therefore, shown that the constant-modulus
and the finite alphabet properties can be exploited in blindly
estimating ξo without increasing the dimension of the op-
timization procedure. Indeed, the VSC&CM-based and
the VSC&FA-based estimators are obtained by a one di-
mensional search, the same as with the existing VSC-based
estimator. The computations of the criteria in eqs. (18)
and eqs. (23) are more demanding than that of JV SC .

If the system is fully loaded, then Na = N , and the
VSC-based estimator fails. Our estimators, which in this
case should be referred to as the CM-based and FA-based
estimators, continue to perform well. Furthermore, in this
case,C2 = Γ = NIwhere I is the N×N identity matrix,
and hence no matrix inversion is required. However, in
this case, the CFO can be unambiguously estimated only
in the interval [−0.5, 0.5).

5. PERFORMANCE ANALYSIS

Here we only consider fully loaded systems so that the
comparison of the algorithms proposed in this paper would
not be affected by the VSC-based criterion. We com-
pare the two estimators using Monte-Carlo simulations.
Only one OFDM block is used. We consider a total of
N = Na = 64 sub-carriers. The transmitted symbols
are drawn from equiprobable MPSK constellations with
M=2,4 or 8. The channel coefficients are generated using
an uncorrelated Rayleigh scattering model with exponen-
tial power delay profile, i.e., E {h∗i hj} = exp(−βi)δ(i−
j), with β = 1/5. The CFO is generated randomly be-
tween -0.5 and 0.5. Both the channel coefficients and the
CFO are generated randomly for each Monte-Carlo run.
The signal-to-noise ratio (SNR) is defined as

SNR = 10 log10

Na

∑L
i=0 E

{
|hi|2

}

σ2
v

.

where σ2
v is the variance of the additive noise. Mean-

square error (MSE) was estimated empirically from 200
Monte-Carlo runs.

For BPSK symbols, the performance of the two esti-
mators were found to be nearly the same (see fig. 1). For
higher size constellations, the CM-based estimator outper-
formed the FA-based estimator.

6. CONCLUSIONS

In this paper, we proposed two blind frequency offset esti-
mators for PSK-OFDM systems in the context of frequency-
selective fading channels. We showed that exploiting the
constant property of PSK symbols was more beneficial
than exploiting the finite alphabet property of these con-
stellations.
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Fig. 1. MSE of CFO estimators vs. SNR; BPSK symbols;
L = 6.


