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ABSTRACT 

The last few years have seen the launch of several high-
resolution satellites, and many more are planned in the 
near future. In parallel, new high-resolution CCD cameras 
for use in aerial photography have been developed. In this 
paper, we focus on this new optical high-resolution data. 
We present the challenges arising from the new 
technology in the introduction, and then concentrate on 
three applications to SPOT5 and Pleiades HR simulations 
and aerial images: deconvolution, urban area extraction, 
and road network detection. In conclusion, we comment 
on future prospects. 

1. INTRODUCTION 

High-resolution data is becoming increasingly available in 
remote sensing applications. In this paper, we will 
concentrate on civilian optical sensors on board satellites 
or airborne vehicles. 

For any application, the important specifications are the 
type of sensor (panchromatic or multispectral), its 
resolution, quantization and swath width, and the type of 
the available stereovision system if any. Table 1 lists this 
information (obtained from the web sites of the 
manufacturers or from specialized workshops) for a few 
high-resolution satellites. Why are these specifications so 
useful and what are the new challenges associated with 
them? First, the spectrum that characterizes the sensor is 
very important for classification purposes: working on 
multispectral data in the visible, near infrared or medium 
infrared domain could enable the detection of different 
types of vegetation for instance. One image-processing 
problem related to the spectrum is the fusion of the 
information provided by the different bands. The second 
specification is the resolution of the sensor: increasing 
resolution provides new opportunities for object detection 
and finer classification, which are useful in urban 

planning for example. Several image-processing problems 
are directly connected to HR data: the detection of 
oriented textures while preserving homogeneous regions, 
for example, is a real challenge. Another image-
processing problem is created by very HR data, namely 
taking into account not only the texture but also the 
geometry of each detected object. A third important 
specification is the swath width of the sensor (related to 
the size of the region represented in a single image): 
usually, higher resolutions imply smaller swath widths. 
But this will no longer be true, for instance, following the 
introduction of the Pleiades HR satellite in the near future. 
In that case, an image-processing problem is created by 
the sheer size of the data, in particular how to store the 
data efficiently and retrieve relevant information. The 
image-processing task is thus embedded in a larger 
problem known as information mining. A fourth useful 
specification is the quantization (i.e. the number of bits 
used to code the image). More and more HR data is coded 
using between 10 and 12 bits rather than 8. A direct 
consequence is that images possess a larger number of 
gray levels, which enables better image processing (better 
analysis of shadows, for instance) but poses a problem 
with respect to data storage capacity and data 
compression. The last important specification is the 
stereovision capacity, whether performed in track or cross 
track. One image-processing task related to stereo is 3D 
reconstruction. The aim is to recover a high-resolution 
Digital Elevation Model (DEM), which is necessary for 
mobile telecommunication simulation for instance.  

Hereafter, due to space limitations, we restrict ourselves to 
three image-processing tasks, namely image de-
convolution, urban area extraction and road network 
detection. For each task, we have tested the proposed 
method on SPOT5 and Pleiades HR simulations (real 
SPOT5 data will be shown during the conference if 
available) and/or on aerial images. A detailed description 
of SPOT5 satellite characteristics, with many examples of  
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Specifications Satellite Country Launch 
Date Sensors Resolution Quantization Swath Width Stereo 

PAN 1m 11 bit 11km Ikonos U.S.A. 24/9/99 
MS (4 bands) 4m 11 bit 11km 

In & cross 
track ±45° 

Eros A Israel 5/12/00 PAN 1.8m 11 bit 12.5km In track ±45° 
PAN 0.61m 11 bit 16.5km Quickbird U.S.A. 18/10/01 

MS (4 bands) 2.44m 11 bit 16.5km 

In track ±38° 
Cross track 
±30° 

PAN 2.5m – 5m 11 bit 60km Spot 5 France, 
Belgium, 
Sweden 

3/5/02 

MS (4 bands) 10m 11 bit 60km 

In track ±20° 
Cross track 
±27° 

PAN 1m 11 bit 8km Orbview 3 U.S.A. Planned 
2002 MS (4 bands) 4m 11 bit 8km 

In & cross 
track ±45° 

PAN 2.5m 10 bit 30km Yes +26° -5° Cartosat 
(IRS-P5) 

India Planned  
2003/4 PAN (bis) 2.5m 10 bit 27km  

Eros B Israel Planned 
2003 

PAN 0.85m 8 bit 16km In track ±45° 

PAN 0.7 – 1m 10 – 12 bit 20 – 40km Pleiades 
HR 

France, 
Italy 

Planned 
2006 MS (4 bands) 2.8 – 4m 10 – 12 bit 20 – 40km 

In & cross 
track ±30° 

Table 1

possible applications, can be found in [1], while [33] 
contains an interesting description of the CCD cameras 
developed by IGN. 

2. EXAMPLE 1: IMAGE DECONVOLUTION 

The deconvolution of blurred and noisy satellite images is 
an ill-posed problem. Direct inversion leads to 
unacceptable noise amplification. Usually, the problem is 
either regularized during the inversion process, or the 
noise is filtered after deconvolution and decomposition in 
the wavelet domain. In the case of high-resolution data, 
the problem is worse, because we wish to preserve sharp 
edges and have good quality reconstructions of both 
homogeneous regions and areas of oriented texture. 

Many methods have been proposed for regularizing the 
deconvolution problem by introducing a priori constraints 
on the solution [6,7,9,17]. However, most of them do not 
preserve textures. To achieve a better deconvolution, 
[12,13,25,26,30,31] have proposed variants on the second 
type of solution (i.e. denoising after deconvolution 
without regularization). 

We have proposed a method based on Complex Wavelet 
Packets (CWP) [23,24], which possess better translation 
invariance than standard wavelets, and have more 

directional sensitivity. The coefficients of the CWP 
transform are thresholded fully automatically within a 
Bayesian framework. The results obtained on both SPOT5 
and Pleiades HR simulations, as well as on real aerial 
images exhibit correctly restored textures and a high 
Signal to Noise Ratio (SNR) in homogeneous areas. 
Compared to concurrent algorithms [22], the proposed 
method is faster, rotationally invariant, and better restores 
textures by taking into account their orientation. The 
deconvolved images can be used as they are, or can 
provide a starting point for an adaptive regularization 
method in order to obtain sharper edges [22,23]. An 
example is given below: Fig. 1 represents the original 
image (SPOT 5 simulation), Fig. 2 corresponds to the 
blurred and noisy data, and Fig. 3 shows the result 
obtained by the proposed method. 

3. EXAMPLE 2: URBAN AREA EXTRACTION 

Various applications require the extraction and the 
analysis of urban areas from HR satellite data. Such 
results are needed for land-use classification in order to 
draw thematic maps, as well as for the study of urban 
pressure on forests and agriculture. Urban area detection 
is also used to follow urban expansion in developing 
countries. Military intelligence also requires this type of 
information. There are many more examples. 
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Fig. 3 

The methods used to discriminate urban areas are often 
based on texture analysis. In [19], Gouinaud provides a 
comparison of many different approaches. Hereafter, we 
will mention just a few methods. In [20], Haralick 
derives features (e.g. energy, entropy, and correlation) 
from Grey Level Co-occurrence Matrices (GLCM), 
which are constructed from the image by estimating the 
pairwise statistics of pixel intensity. He applies this 

method to the segmentation of LANDSAT images. 
However, in [3], Baraldi and Parmiggiani underline the 
inadequacy of these features for the analysis of urban 
scenes in SPOT images. In [8], Conners, Trivedi and 
Harlow define new features derived from GLCM but 
better adapted to urban scene segmentation. Oriented 
filter banks such as Gabor filters [15] have also been 
used for this purpose. In [21], Houzelle and Giraudon 
use radar images to select patches from which to 
estimate the texture parameters of urban areas in SPOT 
images. This method supposes that pairs of images 
(optical and radar) are available for the same urban area. 
In [10], Descombes and Prêteux use a texture parameter 
called temperature to extract urban masks. This method 
gives good results on SPOT3 images but not on SPOT5 
simulations. In particular, the geometric shape of the 
detected urban areas is not correct due to oriented 
textures such as orchards and vineyards. In [36], Winter, 
Maître, Cambou and Legrand develop a multi-scale 
method based on the observation that an optimal 
detection scale exists for each object. This method uses 
entropic measures defined on wavelet pyramids. The 
results on SPOT5 simulations do not localize the 
boundary of the urban area accurately. 

The method we have proposed in [27,28] is based on 
eight different 1D Markov Chain models as shown in 
Fig. 4. Instead of considering a classical isotropic 
neighborhood as usual for a Markov random field (with 
4 or 8 neighbors), we just define in the direction d the 



neighborhood of pixel s to be the set of the two nearest 
pixels to s in that direction. Then, the conditional 
probability for the model defined in the direction d 
depends on the mean md

s of the two neighbors of s in 
direction d. It can be shown that the key texture features 
are the local conditional variances σd

2, which can be 
estimated easily for each of the eight chain-based models. 
As the lattice presented in Fig. 4 is anisotropic, a 
normalization of the estimated parameters is necessary in 
order to correct the bias introduce by the anisotropy. A 
renormalization group approach [18] is used 
(renormalization by decimation). Then we classify the 
eight renormalized local conditional variances in 
increasing order and keep only the mean of the two 
central values. It can be shown [28] that this parameter 
characterizes urban areas while excluding water, forest, 
and fields (in particular orchards and vineyards), as well 
as green-houses for instance [27]. Next, a classification is 
obtained using a fuzzy C-means algorithm operating on 
the original objective function plus an entropy term. 
Finally, we do some post-processing: first, the result is 
regularized using a Potts model, then false alarms are 
removed using the minimum of the local conditional 
variance. Many tests have been conducted on SPOT5 
simulations as well as on aerial images, and are described 
in [27]. It can be shown that the proposed technique gives 
better results than previously existing methods (in 
particular, comparisons have been made with Gabor filters 
and co-occurrence matrices [28]). An example is shown in 
Fig. 5 (SPOT 5 simulation). This method works well for a 
resolution between 20m [SPOT3] and 2.5m [SPOT5 
Supermode]. Below 2m of resolution, the results are no 
longer that satisfactory due to the importance of building 
shape. A more appropriate method could be developed 
based on marked point processes for instance [11]. 
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Fig. 5 

4. EXAMPLE 3: ROAD NETWORK DETECTION 

In this section, we focus on the automatic extraction of 
linear features such as road networks from HR satellite or 
aerial images. This is an open problem of great interest in 
image processing [5,14,16,29], but all these methods 
require starting points (usually chosen by hand). 

Furthermore, most methods are pixel-oriented. Pixel-
oriented approaches are quite sensitive to noise, local 
minima, and false alarms generated by similarity to other 
objects in the image. F. Tupin et al. in [35] adopt an 
object-based approach to the solution of this problem, 
using a random field on a graph of segments, and show 
the necessity for a global model of these features. The 
difficulty lies in the definition and extraction of the graph, 
which should contain the road network. 

A new direction in image processing that overcomes the 
drawbacks of these pixel-oriented techniques is to analyze 
the objects and their interactions in the image directly, 
using stochastic geometry [2,4] and point processes. 

In mathematical terms, practical and flexible line segment 
processes are required. Unfortunately, until recently, the 
only model that had been studied was the Poisson line 
segment process [32]. This model does not take into 
account the dependencies that exist in road networks for 
example. 

To extract road networks using an object-based approach 
[34], we make the hypothesis that a road network is 
formed by several connected segments. In fact the 
segments represent ribbons, because roads have a strictly 
positive width. The segments have a center, an 
orientation, a width and a length (all these quantities are 
random variables). We make the hypothesis that a line 
network is the realization of a marked point process. The 
probabilistic model of this point process has two 
components. The first component is the interaction model, 



which describes the interactions between segments: 
connection, attraction, repulsion, orientation, and the 
dimension of the line network. The second component is 
the data model, which describes the location of the 
different segments in the image. Thus, the problem of 
road network detection in an image can be stated as a 
marked point process [11]. We define the image of a 
segment by the geometric figure given by the label of the 
segment (i.e. the length, width and orientation) and its 
position (i.e. the center). 

Using the marked point process framework, segments can 
appear or disappear during the optimization, and their 
locations can vary. We do not need to initialize a segment 
graph. 

To each segment are associated two attractive areas 
around the extremities and a repulsive area around the 
center of the segment. If a segment intersects the attractive 
area of another segment, we have an attractive interaction 
(favored configuration) with an increasing intensity as the 
orientation difference between the two segments 
decreases. If a segment intersects the repulsive area of 
another segment, we have a repulsive interaction 
(penalized configuration) with a decreasing intensity as 
the orientation difference between the two segments tends 
to π/2. Some penalizing constants are added for segments 
having one or two unconnected extremities. These three 
terms allow us to control the local curvature of the 
network, the number and shape of the crossings, and the 
connectivity of the network respectively. To compute the 
data term, we define the silhouette of a segment as its 
projection onto the image lattice. We then define a mask 
consisting of three parts: the segment silhouette, pixels to 
the left of the segment and pixels to the right of the 
segment. The likelihood, under a Gaussian assumption, of 
the three hypotheses: “the mask corresponds to one, two 
or three different areas” is used to define the external 
field. To optimize the model, we consider a reversible 
jump Markov Chain Monte Carlo (MCMC) algorithm 
embedded into a simulated annealing scheme. The 
definition of the transition kernel is crucial for obtaining 
reasonable convergence rates. We have to define 
transitions that are consistent with the constraints of the 
model. For the road extraction model, we first have a birth 
and death kernel. These transitions correspond to adding 
or removing a segment with uniform probability. A birth 
or a death is also allowed within the neighborhoods of the 
segments in the current configuration. This transition 
allows the prolongation of the network. We also have 
some local perturbations of one segment (translation, 
rotation). This model has been tested on aerial images and 
on SPOT5 simulations. A result (Fig. 7) is shown for an 
aerial image (Fig. 6). 

 
Fig. 6 

 
Fig. 7 

5. CONCLUSION 

In this paper, we have presented some challenges arising 
in the processing of high-resolution satellite and aerial 
images. We have briefly described three methods based 
on various mathematical models (complex wavelet 
packets, Markov random fields and marked point 
processes) in order to achieve, respectively, better image 



deconvolution, more precise urban area extraction, and 
automatic road network detection. 

Due to the increase in the resolution and swath width of 
the new sensors, as well as the number of images 
available, one of the main problems in the near future will 
be fast and efficient information retrieval. 
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