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ABSTRACT

In this paper, we apply particle �ltering to multiuser

detection (MUD) in synchronous CDMA systems with

perfect channel state information (CSI). To apply par-

ticle �ltering to MUD, �rst we �nd a factored represen-

tation of the posterior distribution. We show that the

whitened matched �lter (WMF) output allows such rep-

resentation. No system approximations are made and

the method is \soft" in nature. As a result, a near op-

timum performance is observed in simulations both in

the equal power case and the near-far case. Since the

computational complexity of the method is not expo-

nential with the number of users, the method may have

potential for industrial application.

1 Introduction

When MUD was introduced in the eighties, it quickly

received a great deal of attention due to its potential

for reducing the e�ects of multiple access interference

(MAI) and thereby for increasing the capacity of CDMA

systems. Since optimum maximum likelihood MUD is

exponential in complexity, numerous approximate de-

tectors were developed for MUD. In general, succes-

sive/iterative detectors [3], such as the decorrelating

decision-feedback detector, perform better than their

corresponding \one-pass" detectors like, for example,

the decorrelating detector. These successive/iterative

detectors usually form interim hard decisions for later

stages and are, thus, prone to error propagation. Conse-

quently, the performance of these conventional detectors

is not near optimum.

In [10], a Markov chain Monte Carlo method, the

Gibbs sampler, was used for CDMA MUD. It was im-

plemented in a Bayesian framework, and it was demon-

strated that it could provide near optimum performance.

It is \soft" in nature, that is, the method allows for ex-

change of \extrinsic" information in an iterative (turbo)

joint MUD and channel decoding. However, the Gibbs

sampler has inherent drawbacks. It is hard to deter-

mine when the underlying Markov chain converges, and
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sometimes, the Gibbs sampler gets stuck at a local op-

timum. As a result, when we experimented with it on

MUD, there was an error oor in its performance.

In this paper, we aim to develop a Bayesian-based so-

lution that can outperform conventional detectors and

overcome the shortcomings of the Gibbs sampler. To

that end we would like to keep the capability of pro-

viding \extrinsic" information while performing MUD.

We propose a particle �ltering approach, a methodology

that has reemerged recently in the �elds of engineering

[4], econometrics [8], and statistics [5]. However, to ap-

ply particle �ltering, one needs to �nd a dynamic state

space model representation of the system which in our

problem is not obvious. We show that the whitened

matched �lter (WMF) output, which is used in decor-

relating decision feedback detectors, allows such a rep-

resentation. Note that our work is di�erent from that

in [6], where the binary data of all users in a symbol

interval are considered as a super symbol. As a result,

the sample space grows exponentially with the number

of users. By contrast, our algorithm samples one user at

a time in the binary space and can handle large number

of users.

2 System description

Consider a synchronous CDMA system with a chip rate

(processing gain) C and K users. Let T denote the

symbol duration and sk(t) the normalized deterministic

signature waveform assigned to the kth user. Here t 2
[0; T ] and k 2 f1; : : : ;Kg. Let bk 2 f�1;+1g be the

bit transmitted by the kth user, ak the channel state

information of the kth user, and �n(t) the received zero

mean complex white Gaussian noise with variance �2.
We can express the received signal y(t) as

y(t) =

KX
k=1

akbksk(t) + �n(t) t 2 [0; T ]: (1)

The received signal is a superposition of K antipodally

modulated synchronous signature waveforms plus noise.

The cross-correlation between the signature waveforms



of the ith and the jth users is de�ned according to

Rij =< si; sj >=

Z T

0

si(t)sj(t)dt (2)

where Rij is the ijth element of the cross-correlation

matrix R.

In CDMA systems, we often work with the matched

�lter output,

yk =< y(t); sk(t) >=

Z T

0

y(t)sk(t)dt: (3)

The set of matched �lter outputs y = [y1 y2 � � � yK ]
T

(T stands for vector or matrix transposition) can be rep-

resented in a vector-matrix form according to

y = RAb+ n (4)

where A = diagfa1; � � � ; aKg is the diagonal matrix of

the channel state information, b = [b1 b2 � � � bK ]
T is the

user symbol vector, and n is a complex-valued Gaussian

vector with independent real and imaginary components

and covariance matrix equal to �2R.

The cross-correlation matrix is positive de�nite, and

we can factor it by Cholesky decomposition. There

exists a unique lower triangular matrix F such that

R = FTF: If we apply F�T = (FT)�1 to the matched

�lter output, we obtain

�y = (FT)�1y = F�TFTFAb+F�Tn = FAb + �n; (5)

or equivalently

�y = FBa+ �n (6)

where B = diagfb1; b2; � � � ; bKg is the user symbol ma-

trix, and a is the K� 1 vector of channel state informa-

tion. The covariance matrix of �n becomes

E
�
�n�nT

�
= �2FTRF�1 = �2I (7)

where I is the identity matrix. Since the noise becomes

i.i.d. white Gaussian, �y is called the whitened matched

�lter(WMF) output. The expression in (6) can be writ-

ten in component-wise form as

�yk =

KX
l=1

Fk;lalbl + �nk; k = 1; 2; � � � ;K: (8)

In the sequel, let �y1:k = f�y1; � � � ; �ykg, and de�ne b1:k
and a1:k similarly. The objective is to detect b1:k given

�y1:k.

3 Particle �ltering MUD with perfect CSI

All the prior information and information from the data

is combined in the posterior distribution p(b1:K j�y1:K).
Direct evaluation of the posterior is impossible for large

K due to its high dimensionality. An alternative is

to obtain samples (trajectories) fb
(j)

1:Kg
J
j=1 and weights

fw
(j)

1:Kg
J
j=1 associated with the trajectories, where j is

the trajectory index, and using them, to compute de-

sired estimates. For example, we can approximate the

expected value of any function of b1:K , f(b1:K), by

E(f(b1:K)) '
1PJ

j=1 w
(j)

JX
j=1

w(j)f(b
(j)

1:K): (9)

If the trajectories are drawn from the posterior distribu-

tion itself, all the trajectories have equal weights. Oth-

erwise, if they are taken from a proposal importance

function �(b1:K j�y1:K), the weights are evaluated accord-

ing to

w(j) =
p(b

(j)

1:K j�y1:K)

�(b
(j)

1:K j�y1:K)
; 8j: (10)

By the law of large numbers, under certain conditions,

the approximation in (9) reaches the true value when

the number of samples J approaches in�nity.

The posterior distribution can be factored according

to

p(b1:kj�y1:k) / p(�ykjb1:k)p(bk)p(b1:k�1j�y1:k�1) (11)

and if we choose the proposal distribution in the form

of �(b1:kj�y1:k) = �(b1:k�1j�y1:k�1)�(bkjb1:k�1; �y1:k), we

can form the trajectories recursively. Suppose that

from previous iterations we have generated the trajec-

tories fb
(j)

1:k�1g
J
j=1 from �(b1:k�1j�y1:k�1) with weights

fw
(j)

k�1g
J
j=1. If we draw particles b

(j)

k from the

importance proposal distribution �(bkjb
(j)

1:k�1; �y1:k) =

p(bkjb
(j)

1:k�1; �y1:k) and append them to b
(j)

1:k�1, the ex-

pended trajectory b
(j)

1:k can be weighted with respect to

p(b1:kj�y1:k) according to

w
(j)

k =
p(b

(j)

1:kj�y1:k)

p(b
(j)

k jb
(j)

1:k�1; �y1:k)�(b
(j)

1:k�1j�y1:k�1)

=
p(�ykjb

(j)

1:k)p(b
(j)

k )p(b
(j)

1:k�1j�y1:k�1)

p(�ykj�y1:k�1)
p(�ykjb

(j)
1:k)p(b

(j)
k

)

p(�ykjb
(j)
1:k�1;�y1:k�1)

�(b
(j)

1:k�1j�y1:k�1)

/ w
(j)

k�1p(�ykjb
(j)

1:k�1; �y1:k�1)

/ w
(j)

k�1

X
bk

p(�ykjbk; b
(j)

1:k�1)p(bk) (12)

where w
(j)

k�1 =
p(b

(j)
1:k�1j�y1:k�1)

�(b
(j)
1:k�1j�y1:k�1)

is obtained from the pre-

vious iteration. In deriving the above equation, we uti-

lized the fact that p(b
(j)

k jb
(j)

1:k�1; �y1:k�1) = p(b
(j)

k ), i.e., bk
is independent of other users and previous observations.

We have also ignored the term p(�ykj�y1:k�1) because it is

the same for all trajectories. The importance proposal

distribution used here is referred to as optimal because

it takes into account all the previous particles and all

available observations, and as a result produces weights



with minimal variance conditional on b
(j)

1:k�1 and �y1:k [2].
the proposal distribution can be evaluated according to

�(bkjb
(j)

1:k�1; �y1:k) = p(bkjb
(j)

1:k�1; �y1:k)

/ p(�ykjbk; b
(j)

1:k�1; �y1:k�1)p(bkjb1:k�1; �y1:k�1)

= p(�ykjbk; b
(j)

1:k�1)p(bk): (13)

Note that the weight is proportional to the sum of the

proposal densities in (13). In our case, since bk 2

f+1;�1g, there are only two proposal densities to eval-

uate and the weight can be easily obtained.

In summary, the algorithm proceeds as follows:

For the iteration of the kth user and the jth trajec-

tory,

1. Draw a particle b
(j)

k from the proposal distribution

(13).

2. Append b
(j)

k to b
(j)

1:k�1 and obtain the new trajectory

b
(j)

1:k.

3. Evaluate the weight of the jth trajectory using (12).

When the algorithm is completed with the last user

K, we have trajectories and weights f(b
(j)

1:K ; w
(j)

K )gJj=1

that can approximate p(b
(j)

1:K j�y1:K), the desired posterior
distribution. This process of recursively obtaining the

particles b
(j)

k is called particle �ltering.

From the generated particles and their weights, we

can obtain various types of estimates. For example,

the marginalized posterior distribution can be approxi-

mated by

p(bkj�y1:K) '
1PJ

j=1 w
(j)

K

JX
j=1

w
(j)

K Æ(bk � b
(j)

k ) (14)

where Æ(�) is the Dirac delta function. If the adopted es-
timate of bk is the one that maximizes the marginalized

posterior distribution, we have

b̂k = argmax
bk

p(bkj�y1:K)

' argmax
bk

1PJ

j=1 w
(j)

K

JX
j=1

w
(j)

K Æ(bk � b
(j)

k ):(15)

If bk = [b
(1)

k ; � � � ; b
(J)

k ]T and wK = [w
(1)

K ; � � � ; w
(J)

K ]T,

(15) can be simpli�ed as

b̂ = sign(bTkwK): (16)

Note that \extrinsic" information can also be derived

from (14).

An important issue of the particle �ltering process is

the need for resampling. Namely, after several steps,

some weights of the samples become trivial and stop

contributing to the overall estimates. In the literature

of particle �ltering, resampling is used so that samples

with negligible weights are replaced by those from high

distribution areas of the desired posterior distribution.

There are many strategies for resampling, and we use

the residual resampling procedure as described in [1].

The complexity of the algorithm is O(KJ), i.e., pro-
portional to the product of the number of particles and

number of users. If the number of particles is �xed, then

the complexity is only linear with respect to the number

of users.

4 Simulations

We simulated a synchronous CDMA system with K =

15 users with equal powers and a chip rate of C = 30.

The spreading codes were generated randomly and the

same spreading code was used in all experiments. Resid-

ual resampling was performed after every 5 users. The

results of the performance comparison with other pop-

ular CDMA multiuser detectors are presented in Figure

1. The performance curves in the �gure were obtained

by averaging the Bit-Error Rates (BERs) of all 15 users.

The detectors used in the comparison include the

three-stage successive cancellation detector with decor-

relating �rst stage (3-stage) [9], the detector based on

Gibbs sampling [10], and the decorrelating decision feed-

back detector(DDF) [3]. For the Gibbs sampler, we have

experimented with two scenarios with di�erent burn-

in periods (the periods until convergence). In the �rst

case, 100 samples were generated of which the �rst 50

samples were discarded (Gibbs-50). In the second case,

150 samples were drawn, and the �rst 100 samples were

discarded (Gibbs-100). As a reference, we used the

breadth-�rst tree-search algorithm [7], which is optimal,

to provide a lower bound for the detectors.

From the results, we see that the particle �ltering

provides near-optimum performance. We used two par-

ticle �ltering detectors, one with 50 particles for each

user (PF-50) and another with 100 particles (PF-100).

It appears that the performance gain by increasing the

number of particles from 50 to 100 is only marginal.

The �gure also shows that at high SNRs, the Gibbs

sampler gets trapped at some local optimum and that

it takes long time for the algorithm to converge to the

global optimum. Consequently, with a limited burn-in

period, the Gibbs sampler exhibits an error oor. In

comparison, the particle �ltering based detector does

not have this problem.

We also investigated the performance of these detec-

tors in a near-far scenario. In our experiment, the tar-

geted user (the �rst user), had an SNR of 9 dB, and the

signal strength of the remaining 14 users was identical.

In comparison with the power of the targeted user, the

power of the remaining users, Eb=E1, varied from �10

dB to 10 dB. In Figure 2, we plotted the BER of the

�rst user as a function of Eb=E1. It is clear that particle

�ltering almost always outperforms the 3-stage detector

and although it performs worse than the Gibbs sam-

pler with weaker interferers, it is more consistent than
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Figure 1: Performance comparison of various detectors

for C=30, K=15, and equal power with perfect CSI.
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Figure 2: BER performance comparison of various de-

tectors in a near-far scenario for C=30, K=15, and per-

fect CSI. The SNR of the �rst user was 9 dB.

the Gibbs sampler and it is near optimum in the range

from �4 dB to 10dB. Note that during the simulation,

the users are arranged in descending order according

to their power. The ordering has some impact on the

performance of particle �ltering. The suboptimal per-

formance from �10 dB to �6 dB may be caused by the

ad-hoc resampling procedure or the limited number of

particles. The performance improvement of the particle

�ltering based detector will be the objective of further

research.

5 Conclusions

In this paper, we used the WMF output to derive a fac-

tored representation of the posterior distribution func-

tion for the MUD problem, and the representation al-

lowed for application of particle �ltering. The proposed

method provides consistently better performance than

several existing detectors which have been tested. The

complexity of the method is linear in the number of

users and therefore, it has great potential in practice.

The method, however, needs further study which may

lead to additional improvements of its performance. For

example, a thorough examination of the detector's per-

formance as a function of the number of particles and

number of users is necessary, and other strategies for

resampling should be explored.
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