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ABSTRACT

Positioning of road vehicles in wireless radio networks
is a highly non-linear multi-sensor problem. The radio
measurements deliver snapshot information of position
as circle, radial and hyperbolic lines with various reliabil-
ity, and possibly also complex power attenuation maps.
Further, fading and absence of line of sight give com-
plicated disturbances on these measurements. Temporal
and spatial prior knowledge may include maximal veloc-
ity and acceleration of the mobile unit, and for auto-
motive applications also the constraint that most of the
time is spent on roads, which are stored in a digital map.
We outline a framework where all this information can
be incorporated, and the true a posteriori distribution
of position can be approximated with arbitrary accuracy
to be traded off with real-time requirements. The algo-
rithm is based on the particle filter, and we demonstrate
it on a few simulation examples.

1 INTRODUCTION

The field of positioning in wireless networks is both
driven by new market opportunities and laws for emer-
gency call positioning. Various methods have been dis-
cussed in literature, and the aim here is to illuminate the
potential of using particle filters for positioning.

The position is determined using measurements, which
are either network-assisted or mobile-assisted. The for-
mer requires less user equipment modifications, but is
relatively costly, while the latter is cheaper for the oper-
ators but requires dedicated routines in the user equip-
ment. For a more thorough overview, see [6, 16]. Pro-
posed approaches utilize different types of measurements,
which include:

• Distance to base stations of known positions [7, 17,
18]. It is determined from time of arrival (TOA),
time difference of arrival (TDOA) or enhanced ob-
served time difference (E-OTD) measurements, see
Figure 1.

• Received Signal Strength of signals with known
powers, which are closely related to the travelled
distance [17, 14].

• Angle, which relates the angle of arrival (AOA) at
the receiver to a fixed coordinate system.

• Map Information, which is further described
in [10].
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Figure 1: Distance measurements in wireless networks.
In uplink TOA, the base stations pi monitor the time
of arrival ti of a characteristic burst from the mobile p
to extract the distance |p − pi|. The mobile is more ac-
tive in TDOA, where the time differences ∆t = ti − t1
are measured, an possible locations describe hyperbolas
with the other base stations pi in foci. The effect of
non-synchronized base stations is considered in E-OTD,
where the network estimates the difference in transmis-
sion times between the base stations.

When regular samples of the measurements are assumed
available, a popular solution to this sensor fusion prob-
lem is a model-based extended Kalman filter [2, 9, 14, 18].
An interesting alternative to this classical approach is re-
cursive implementations of Monte Carlo based statistical
signal processing [8], which are known as particle filters,
see [5]. The more non-linear model, or the more non-
Gaussian noise, the more potential particle filters have,
especially in applications where computational power is
rather cheap and the sampling rate slow. A framework
for particle filtering in positioning, navigation and track-
ing applications is further discussed in [10].

Models of motion and measurements form a natural basis
for the work and are presented in Section 2. The particle
filter is introduced in Section 3, followed by simulations
and a short discussion. Finally, Section 5 provides some
conclusive remarks.

2 MODELS

Central for all position applications is the characteriza-
tion of measurements. When considering model-based
sensor fusion, also the motion model is vital. A rather
generic model can be written as

xt+1 = f(xt) + Buut + Bwwt (1a)

yt = h(xt) + et. (1b)



Motion models (1a) are further discussed in Section 2.1,
while Section 2.2 provides measurement equations (1b).

2.1 Motion Models

The signals of primary interest in positioning applica-
tions are related to position pt, velocity vt and acceler-
ation at. Depending on whether the signals are mea-
sureable or not, they may be components of either the
state vector xt or the input signal ut. Other parameteri-
zations, however, might provide better understanding of
design variables and algorithm tuning.

Depending on the context, the velocity and/or the accel-
eration might be measurable (the natural example is a
car-mounted system) The state dynamics with/without
velocity measurements can be modeled as

pt+1 = pt
︸︷︷︸

xt

+ Tsvt
︸︷︷︸

Buut

+ Tswt
︸ ︷︷ ︸

Bwwt

(2a)

(

pt+1
vt+1

)

=

(

I Ts · I
0 I

)

︸ ︷︷ ︸

A

(

pt
vt

)

︸ ︷︷ ︸

xt

+

(

T 2
s · I

Ts · I

)

︸ ︷︷ ︸

Bw

wt (2b)

In (2b), the process noise wt could be multimodal, where
each mode represents a specific event having a certain
probability. For example, when driving in an urban en-
vironment we know that the car most of the time follows
a straight line, but occasionally makes sharp turns. Of
course, even more complex models are possible, e.g. the
coordinated turn model [9].

2.2 Measurement Equations

The main difference between the different positioning ap-
proaches is the measurements available. A generic model
of a measurement equation is according to (1b), where
the measurement noise contributions et are character-
ized by their distributions. If not explicitely mentioned,
a Gaussian distribution is assumed. Every available
measurement signal thus corresponds to a measurement
equation. In this work, the focus is on measurements re-
lated to relative distance rit = |pt − pi| between the mo-
bile position pt and a number of base station positions
pi, i = 1, . . . , M . Essentially, the measurements reflect
the travelled distance of radio signals, either via time
measurements or power measurements. In suburban and

Figure 2: Far-field scattering and local scattering of
transmitted signals in a wireless network.

urban areas, the line-of-sight (LoS) path is sometimes
blocked by buildings. Due to this far-field scattering,
where the signals might take a non-line-of-sight path (see
Figure 2), the measurements can be biased. Instead, the
measurements reflect the travelled distance as

rit =
∣
∣pi − pt

∣
∣ + mi

t, i = 1, . . . , M.

The signals are also subject to near-field scattering,
where the signals are reflected by a large number of ob-
jects close to the receiver. This causes fast variations

of the signal amplitude known as fast fading, but it has
little effect on the travelled distance or low-pass filtered
power measurements.

The base stations in a terrestrial wireless communica-
tions system act as beacons by transmitting pilot sig-
nals of known power. The mobile station monitors the
M (in GSM, M = 5, and in the upcoming WCDMA
standard [1], M = 6) strongest signals, and reports reg-
ularly (or event-driven) the measurements to the net-
work. Based on these measurements, the network cen-
trally transfers connections from one base station to an-
other (handover) when the mobile is moving during the
service session. According to the empirical model by
Okumura-Hata [11], this received power typically decays
as ∼ K1/rα, α ∈ [2, 5], where K1 and α are depend-
ing on the radio environment, antenna characteristics,
terrain etc. One natural approximation is therefore to
assume that K1 and α are the same for similar base sta-
tions in a service area with roughly the same terrain.
All in all, in a logarithmic scale, this provides M mea-
surement equations, one for each available base station,
according to

ha,i(pt) = K − α log10(
∣
∣pi − pt

∣
∣ + mi

t), (3a)

where K = log10 K1. Similar measurements, but with-
out considering or modeling the bias, are used in [13].
Point-mass implementation of estimators based on RF
measurements is also discussed in [4].

To provide more accurate positioning via RF measure-
ments, future mobile stations will be able to estimate the
traveled time (and hence the distance) of radio signals
from a multitude of base stations with known positions.
The aforementioned methods TOA, TDOA, OTD all are
based on this principle. The resulting M (M is typi-
cally 1-3) measurement equations can thus be modeled
by (3b).

hb,i(pt) = |pi − pt|+ mi
t, (3b)

Any signaling aspects are neglected, but it is identified
that network-assisted and mobile-assisted systems will
result in different signaling requirements and situations.
Note that any other available measurement signal relat-
ing to the position can be readily incorporated by adding
a new measurement equation. Also highly nonlinear in-
formation such as map information can thus also be uti-
lized [10].

2.3 Unknown Parameters

Positioning aims at estimating the position pt. If the
velocity is unknown, it can also be incorporated in the
state vector of the motion model as in (2b). Further-
more, the biases mi

t are unknown and can be assumed to
change rather step-wise, when the signal path occasion-
ally changes rapidly due to new reflections. A plausible
state evolution model for the biases is therefore

mi
t+1 = mi

t + nit, p(nit) =

1∑

k=0

PrkN (0, σk), (4)

where nit takes on values from two Gaussian distribu-
tions, with a small and a large variance respectively
(σ0 << σ1). The Pr0 and Pr1 reflect the probability
for mi

t making a jump or not. Additional information
about the biases comes from the fact that they are al-
ways larger or equal to zero. These constraints

mi
t ≥ 0, i = 1, . . . , M, (5)



should of course be incorporated in the estimation prob-
lem.

In case of power measurements, also K and α are un-
known. With the assumption of equal parameters for
every base station, they can be modeled as two random-
walk processes.

3 THE PARTICLE FILTER

3.1 Recursive Bayesian Estimation

Consider systems that are described by the generic state
space model (1). The optimal Bayesian filter in this case
is given below. For further details, consult [3].

We assume independent noise with probability densi-
ties pet and pwt . Denote the observations at time t by
Yt = {y0, . . . , yt}. The Bayesian solution to compute the
posterior distribution, p(xt|Yt), of the state vector, given
past observations, is given by [3]

p(xt+1|Yt) =

∫

p(xt+1|xt)p(xt|Yt) dxt, (6a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (6b)

For expressions on p(xt+1|xt) and p(yt|xt) in (6) we use
the known probability densities pet and pwt

p(xt+1|xt) =

| det B−1
w |pwt

(
B−1
w (xt+1 − f(xt)−Buut)

)
, (7a)

p(yt|xt) = pet
(
yt − h(xt)

)
, (7b)

where we have assumed an invertible Bw. For the case
with a non-invertible Bw see [12].

3.2 Particle Filter Implementation

A numerical approximation to (6) is given by

p(xt|Yt) ≈
N∑

i=1

q̄
(i)
t δ

x
(i)
t

(xt), (8)

where δ(·) is the Dirac delta function. A straighfor-

ward way to recursively update the particles x
(i)
t and

the weights q̄
(i)
t is given by [10, 5]

x
(i)
t+1 ∼ p(xt+1|x

(i)
t ), i = 1, . . . , N, (9a)

q̄
(i)
t+1 =

p(yt+1|x
(i)
t+1)q̄

(i)
t

∑N

j=1 p(yt+1|x
(j)
t+1)q̄

(j)
t

, i = 1, . . . , N, (9b)

initiated at time t = 0 with

x
(i)
0 ∼ p(x0), q̄

(i)
0 =

1

N
, i = 1, . . . , N. (10)

4 SIMULATIONS

Either power or distance measuremens are considered in
these simulations. To focus on characteristic aspects of
particle filtering, we simplify by assuming a known veloc-
ity (i.e. the car-mounted application with motion model
according to (2a)) and known propagation parameters
K = 16.3 and α = 3.5 (typically estimated from opera-
tors drive tests). The mobile travels at constant speed
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Figure 3: The true path (thick line), together with road
map and the three base stations.

(= 12 m/s) along roads with sharp turns (45 to 90 de-
grees) in an area with three base stations, see Figure 3.
The power measurements are more uncertain (σe = 6 dB,
[4]) than the distance measurements (σe = 3 dB, [1]).
The other simulation parameters are

p(nit) = 0.98 · N (0, 0.5) + 0.02 · N (0, 15),

p(mi
0) = U(0, 50),

(11)

for i = 1, . . . , 3 and

p(wt) = p(w1
t )p(w2

t ) = N (0, 3) · N (0, 3),

p(p0) = p(p1
0)p(p2

0) = U(−500, 300) · U(0, 400).
(12)

We have used not only a lower limit, see (5), but also
an upper limit (mi

t ≤ 50, i = 1, . . . , 3) on the biases to
simplify the simulations. This means that we can use
p(mi

0) to initialize each bias. In the case with no upper
limit we can use p(mi

0|y
i
0, p0) for initialization instead,

see [15] for details.

All in all, we tested 6 different cases; 3 with distance
measurements (D.1 − D.3) and 3 with power measure-
ments (P.1− P.3):

D.1, P.1 Biases are applied to the measurements, and
they are estimated.

D.2, P.2 Biases are applied to the measurements, but
they are not estimated.

D.3, P.3 The ideal case, i.e. no biases added to the mea-
surements and no estimation of biases.

For all simulations we used 2000 particles, i.e. N = 2000.
More particles did not seem to improve the performance
significantly.

The result based on 50 Monte-Carlo simulations on each
of the 6 cases are summarized in Figure 4 and Figure 5.
In the case with distance measurements (Figure 4), due
to observability problems the estimates of the biases
(mi

t, i = 1, . . . , 3) do not converge until after 60 sec-
onds. After that we get a significant improvement in
the position estimate compared to not estimating the bi-
ases, except during the period 90 − 105 s when there
are no biases contaminating the measurements. Using
power measurements (Figure 5), we gain nothing esti-
mating the biases. With power measurements we can
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Figure 4: Upper plot: Monte-Carlo performance over
time using distance measurements. D.1 (solid line) pro-
vide RMSE = 16 m, D.2 (dashed line) provide RMSE =
24 m and D.3 (dotted line) provide RMSE = 3 m. Lower
plot: True biases (dotted line) and estimated mean(t) of
the biases (solid line) for D.1.

actually obtain worse position performance compared to
not estimating the biases.

For the case with distance measurements we can try
to estimate the biases separately, for each sequence of
position samples, using for example the GPB or IMM
filter [9]. Also, the observability problem encountered
while estimating the biases using distance measurements
can probably be eliminated by including for example map
information. Due to lack of space, consult [15] for a
more extensive simulation study, including a comparison
to Kalman filter based estimation.

5 CONCLUSIONS

The problem of positioning using measurements relative
a multitude of base stations can be seen as a sensor fusion
problem. This work discusses the applicability of particle
filters as an alternative to classical Kalman filter tech-
niques. As shown, particle filters allow a great flexibility
in the structure of the problem, and the chararcteris-
tic nonlinearities and non-Gaussian noises of the studied
application can be readily adopted. We investigate the
plausibility of using more detailed multipath models for
the signal propagation. The conclusion is that it is of
little use with crude power measurements, but improves
the performance with more accurate distance measure-
ments.
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Linköping University, Sweden, 1999.

[4] J. Blom, F. Gunnarsson, and F. Gustafsson. Estimation
in cellular radio systems. In Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing.,
Phoenix, AZ, USA., March 1999.

[5] A. Doucet, N. de Freitas, and N. Gordon, editors. Se-
quential Monte Carlo methods in practice. Springer-
Verlag, 2001.

0 20 40 60 80 100 120
10

0

10
1

10
2

rm
se

 [m
]

0 20 40 60 80 100 120

0

10

20

30

40

t [s]

m
ea

n 
[m

]

Figure 5: Upper plot: Monte-Carlo performance over
time in the simulated scenario using power measure-
ments. P.1 (solid line) provide RMSE = 76 m, P.2
(dashed line) provide RMSE = 69 m and P.3 (dotted
line) provide RMSE = 64 m. Lower plot: True biases
(dotted line) and estimated mean(t) of the biases (solid
line) for P.1.

[6] C. Drane, M. Macnaughtan, and C. Scott. Position-
ing GSM telephones. IEEE Communications Magazine,
36(4), 1998.

[7] S. Fischer, H. Koorapaty, E. Larsson, and A. Kangas.
System performance evaluation of mobile positioning
methods. In Proc. IEEE Vehicular Technology Confer-
ence, Houston, TX, USA, May 1999.

[8] W. Gilks, S. Richardson, and D. Spiegelhalter. Markov
Chain Monte Carlo in practice. Chapman & Hall, 1996.

[9] F. Gustafsson. Adaptive filtering and change detection.
John Wiley & Sons, Ltd, 2000.

[10] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell,
J. Jansson, R. Karlsson, and P.-J. Nordlund. Particle
filters for positioning, navigation and tracking. IEEE
Transactions on Signal Processing, Feb 2002.

[11] M. Hata. Empirical formula for propagation loss in land
mobile radio services. IEEE Transactions on Vehicular
Technology, 29(3), 1980.

[12] A. H. Jazwinski. Stochastic processes and filtering the-
ory. Academic Press, 1970.

[13] H. Jwa, S. Kim, X. Cho, and J. Chun. Position track-
ing of mobiles in a cellular radio network using the con-
strained bootstrap filter. In Proc. National Aerospace
Electronics Conference, Dayton, OH, USA, October
2000.

[14] B. Mark and Z. Zaidi. Robust mobility tracking for cel-
lular networks. In Proc. IEEE International Communi-
cations Conference, New York, NY, USA, 2002.

[15] P.-J. Nordlund, F. Gunnarsson, and F. Gustafsson. Par-
ticle filters for positioning in wireless networks. Sub-
mitted to IEEE Transactions on Vehicular Technology,
2002.

[16] M. Silventoinen and T. Rantalainen. Mobile station lo-
cating in GSM. In Proc. IEEE Wireless Communication
System Symposium, Nov 1995.

[17] M.A. Spirito. Further results on GSM mobile station
location. IEE Electronics Letters, 35(22), 1999.

[18] M.A. Spirito and A.G. Mattioli. On the hyperbolic po-
sitioning of GSM mobile stations. In Proc. International
Symposium on Signals, Systems and Electronics, Sept
1998.


	Introduction
	Models
	Motion Models
	Measurement Equations
	Unknown Parameters

	The Particle Filter
	Recursive Bayesian Estimation
	Particle Filter Implementation

	Simulations
	Conclusions

