
VLSI DESIGN AND IMPLEMENTATION OF
 2-D INVERSE DISCRETE WAVELET TRANSFORM

Paul McCanny1, John McCanny1,2, Shahid Masud2

1DSiP Laboratories, Asbhy Building, Stranmillis Road, Queens University of Belfast,

Belfast BT9 5AH, Northern Ireland
2Amphion Semiconductor Ltd, 50 Malone Road, Belfast BT9 5BS, Northern Ireland

e-mail : {p.mccanny, j.mccanny}@ee.qub.ac.uk

smasud@amphion.com

ABSTRACT

This paper proposes a JPEG-2000 compliant architecture
capable of computing the 2 -D Inverse Discrete Wavelet
Transform. The proposed architecture uses a single
processor and a row-based schedule to minimize control
and routing complexity and to ensure that processor
utilization is kept at 100%. The design incorporates the
handling of borders through the use of symmetric
extension. The architecture has been implemented on the
Xilinx Virtex 2 FPGA.

1. INTRODUCTION

The Inverse Discrete Wavelet Transform (IDWT) is an
important part in the design of a wavelet based imaging
system yet there have been very few architectures
developed to compute the IDWT. This may be based on
the assumption that the forward DWT (FDWT)
architectures is able to compute the IDWT simply by
reversing the data flow. This method, albeit simple,
ignores the up-sampling and boundary techniques needed
for perfect reconstruction. Hence, resulting designs are
inefficient.

Typically a multi-processor scheme is favoured for
IDWT computation. In this, several 1-D DWT processors
are used and configured to be either row or column
processors. This results in complex routing and control
needed to synchronize the processors. The larger multi-
processor cores have limited application when a high
performance is required. Also, the advent of System On a
Chip (SOC) design has meant that smaller competent
cores and ease of integration are desirable characteristics.

In this paper, a single processor architecture is
proposed that uses a simple scheduling algorithm to
reduce the complexity of the circuit and achieve 100%

processor utilization. The size and efficiency of this
design is superior to existing solutions.

2. BACKGROUND

The two dimensional FDWT of an image produces four
sub-bands, the LL, LH, HL and HH sub-bands. although
the FDWT of the LL sub-band may be computed again to
produce the (LL)LL, (LL)LH, (LL)HL and (LL)HH sub-
bands. These sub-bands may be reconstructed to produce
the original image, e.g. the (LL)J, (LL)J-1LH, (LL)J-1HL
and (LL)J-1HH sub-band can be recombined to produce the
(LL)J-1 sub-band.

There are two methods of implementing the IDWT, a
level-first scheme in which an entire LL sub-band is
synthesized before the reconstruction of the next finer
sub-band. If this is the case then a N2/4 (where NxN is the
size of the image) buffer memory is required is to store the
LL data between resolutions. The direct approach can be
used in this way to compute the IDWT. This computes
the IDWT along the columns, storing the coefficients in
memory before computing the IDWT along the rows. The
advantage of this approach is that processor utilization is
kept at 100% throughout the computation. The
disadvantage is the large latency and storage space (N2/2)
required.

The alternative depth-first scheme does not wait until
a sub-band is fully reconstructed before reconstructing the
next. This results in a significant reduction in latency, but
design complexity is increased.

Vishnawath and Owens proposed a common
architecture for the DWT and IDWT [1]. In this paper
parallels are drawn between the scheduling required for a
depth-first computation of both the forward and inverse
DWT, namely the Recursive Pyramid Algorithm (RPA)
and the Inverse Recursive Pyramid Algorithm (IPRA).

Chakrabarti and Mumford proposed an architecture
using the IRPA that is able to compute the wavelet

RAM Block

Delay Line
& Router

Router

Parallel DWT
Processor

LL Buffer

input coefficients

Figure 1: Proposed Architecture

...

...

transform in O(N2) cycles [2]. This transform computes
the IDWT in a row-major fashion and uses four parallel
filters. Two of its filters are used for computing the DWT
along the rows and two for computing the column DWT.
It also requires JN/2 storage (where J is the number of
octaves to be reconstructured). Two scheduling schemes
are proposed in this paper which reduce latency or storage
size. However the processors used in this design are, at
best, active 66% of the time. This architecture also does
not take into account the storage required for the column
processors to store the input LL, LH, HL and HH
coefficients.

A similar depth-first approach was also adopted by
Yu and Chen [3]. In this architecture a scheme similar to
RPA is adopted. However, this seeks to implement RPA
in two dimensions simultaneously. The architecture
requires just NL (where L is the maximum filter length)
storage space but the complexity of the controller and
routing in this design is quite high. This architecture also
computes the IDWT in O(N2) cycles.

3. PROPOSED ARCHITECTURE

The architecture proposed in this paper improves the
efficiency of previous designs by using a row-based
scheduling method to achieve a higher processor
utilization. The results are better than what is possible
using the RPA scheduling [4]. This has the effect of
completely eliminating all the spare cycles in the RPA,
therefore, completing the IDWT of the image in fewer
cycles.

The proposed architecture is shown in Figure 1. It
consists of a main memory unit, an LL buffer unit, a delay
line and a single processing unit. The coefficients are

Set
Cycle 0 1 2 3

1 LL/LH HL/HH LL/LH HL/HH

2 L H L H

Table 1: Input schedule to parallel processor

*

+

+

l0
h1 *

+

+

h2
l1 *

+

+

l2
h3 *

+

h4
l3 *

+

h0
‘0’

x0 x8 x1 x7 x2 x6 x3 x5 x4

y

Figure 2: Parallel Processor for the 9,7 DWT

input in a raster scan manner along the rows. These are
input to a router and stored in the main memory unit. The
coefficients are input in a specific order. In the first row
the LL and HL sub-bands are input. These are interlaced,
e.g. coefficient LL(x, y) is input first, immediately
followed by coefficient HL(x, y), followed by coefficient
LL(x +1, y) and so on. The HL and HH coefficients are
input in a similar manner.

These coefficients are then input to the parallel
processor so that the column IDWT can be computed.
This produces the L and H coefficients, which are stored
in the delay line. The schedule for the computation of the
inverse DWT is shown in Table 1.

3.1. Processor Design

Two alternatives, lifting-based and filter-based, can be
used when designing a DWT processor. The lifting
scheme requires considerably less multipliers than
required by the convolutional filter, [6]. However, many
extra pipeline registers must be inserted to a lifting-based
design to maintain the correct order of computation. This
means that, whilst the lifting-based design is more
efficient in terms of multiplications required for a serial
transform, it does not translate well to a parallel
implementation as the extra registers needed can result in
a 50% increase in the amount of memory required. A
convolutional filter translates easily to a parallel
architecture with a minimum of memory but with a 50%
increase in the number of

Resolution
Level

1

Figure 3: Row-based Input Schedule.

(A row of interlaced LL and HL coefficients are indicated by
a circle, LH and HH coefficients are indicated by a square.)

2

3

 1 2 3 4 5 6 7 8 9
Row

multiplications required compared to the lifting-based
design.

The processor is shown in Figure 2. This processor
exploits the up-sampling of the IDWT by merging both
the analysis coefficients of the low-pass and high-pass
filter into the same structure. This enables the
computation of the low and high pass outputs
simultaneously. The inputs are also folded so as to exploit
the symmetrical nature of the biorthogonal coefficients
and therefore reduce the number of multiplications needed
[7].

3.2. Multi-Resolution Operati on

If more than one resolution is required then a buffer is
used to store the reconstructed LL coefficients from the
previous octave(s). This buffer need only consist of N/2
storage elements and can be implemented using either
RAM or a register file.

The operation of the multi-resolution architecture is
similar to that of the first resolution circuit. Initially the
coarsest resolution (the Jth octave) is input, i.e. the
LLJ/(LL)J-1HL sub-bands are input for the reconstruction
of the LLJ-1 sub-band. When an LLJ-1 coefficient is
generated it is stored in the buffer until a complete row of
LLJ-1 coefficients have been output. The reconstruction of
the LLJ-2 sub-band is achieved by inputting the LL J-1/(LL)J-

2HL sub-bands. Again, the LLJ-2 coefficients are stored in
the buffer until an entire row is completed.

This process continues reconstructing the next LL
sub-band until the LL1/HL1 sub-bands have been input to
the parallel processor to reconstruct one full line of the
image. Now the LH1/HH1 coefficients are used to
reconstruct a second line of the original image. When this
is completed the (LL)1 LH/(LL)1HH coefficients are used
to generate a second row of LL1 coefficients. Figure 3
illustrates the scheduling method used for the row-based
2-D IDWT.

This row-based approach uses significantly less
interconnections than the IRPA alternative [1] thus
decreasing the complexity of the routing required. The
overall processor utilization of a row-based circuit is also

D

Figure 4: Serial delay line for the 5,3 DWT

D

D D

D D D

D D D

x0 x1

x3 x2 x4

fixed at 100%, regardless of number of resolution levels
used.

Symmetric extension is used in JPEG-2000 to ensure
perfect reconstruction [5]. It has been shown that
processor utilization when using the RPA schedule
significantly drops at the boundaries [8]. The row-based
schedule used in this design performs significantly better
than the RPA schedule at the image boundaries. Since
one row of a single resolution is processed at a time only
one row controller is required. Symmetric extension of
the columns is handled by a separate controller.

3.3. Delay Line Structure

The structure of the delay line is shown in Figure 4. The
delay line also incorporates a symmetric extension router
necessary for compatibility with the JPEG-2000 standard
[5]. The delay line consists of L output registers, as well
as L auxiliary registers, for symmetric extension. This
structure consists of four lines of registers, lines 1 -4. The
inputs to the registers on lines 1 and 4 are input to the
parallel processor. Line 2 is used to continuously receive
input coefficients, thereby ensuring that there is no
requirement to stall the input whilst the end of a row is
being symmetrically extended. Line 3 is used as a row of
buffer registers to shift data backwards so as to
symmetrically extend the end of the signal. The signal is
extended symmetrically at the start by routing the inputs
from the coefficients stored in line 2 to the inputs of the
registers in lines 1 and 4. The layout of this structure
mimics the natural fold in the centre of the biorthogon al
wavelet transform thereby keeping the signals close
together when the inputs are applied to the biorthogonal
parallel filter.

The advantages of using this structure , instead of a
separate delay line and router, is that a constant data flow
can be achieved. Therefore, when a new row is input the
structure can store the new row while simultaneously
symmetrically extending the end of the old row. This
keeps the processor active 100% of the time. Also, the
routing required is shorter and more regular than that
required by a standard router.

Filter
Pair

Res
Level

Dimensions Slices Max
Freq

(MHz)

Fps

9,7 1 512x512 625 29.9 57.1
9,7 4 512x512 813 27.2 51.9
5,3 4 512x512 514 30.8 58.8
9,7 3 352x288 741 29.6 145.9

Table 2: Sample Implementation Results on Xilinx

Virtex-2 XC2V250 -5 FPGA

4. IMPLEMENTATION

The circuit has been implemented on the Xilinx Virtex 2
FPGA. This device features embedded RAM and
multiplier blocks, both of which were used in the design.
The processor uses L/2 embedded multipliers and (L–
1)*N RAMBlocks are used for the main storage unit.
Another RAMBlock is used as the LL Buffer.

Symmetric Extension routers, as discussed in Section
3, are used to ensure compatibility with JPEG-2000.
Sample implementation results are shown in Table 2.

5. CONCLUSIONS

An efficient architecture for computing the Inverse DWT
is proposed. This architecture retains efficiency
regardless of the number of resolution levels required. It
is fully parameterisable in terms of resolution level, DWT
coefficients, image size, data word-length and coefficient
word-length. The architecture uses a row-based
scheduling method to maximise processor utilization.
Although the memory used in this design is comparable to
that required by other designs, the scheduling used also
means that routing and control is considerably less
complex than that required by the RPA schedule.

The scheduling used in this architecture is flexible so
that to achieve even higher performance two dedicated
high and low pass processors (with constant coefficient
multipliers) can be used to reduce, by half, the time taken
from O(2N2) to O(N2) for reconstruction of a single octave
and from O(3N2) to O(1.5N2) for a multi-resolution
design. The utilization of the two processors is also kept
at 100%.

6. ACKNOWLEDGEMENTS

This research has been supported by Amphion
Semiconductor Ltd. and an EU funded Research
Studentship.

7. REFERENCES

[1] M. Vishwanath, R.M. Owens “A Common
Architecture for the DWT and IDWT”, Proceedings of
International Conference on Application Specific
Systems, Architectures and Processors, pp 193-198, 1996
[2] C. Chakrabarti, C. Mumford, “Efficient Realizations
of Encoders and Decoders Based on the 2-D Discrete
Wavelet Transform” IEEE Transactions On VLSI
Systems, Vol. 7, No. 3, pp 289-298, Sept. 1999
[3] C. Yu, S.J. Chen, “Efficient VLSI Architecture for 2-
D Inverse Discrete Wavelet Transforms”, Proceedings of
the IEEE International Symposium on Circuits and
Systems, pp. 524-527, 1999
[4] P. McCanny, S. Masud, J.V. McCanny, “An Efficient
Architecture for the 2-D biorthogonal Wavelet Transform
Architecture”, International Conference on Image
Processing, Vol 3, pp 314-317, 2001
[5] M. Boliek, C. Christopoulos, E. Majani, “JPEG 2000
Part I Final Committee Draft Version 1.0”, ISO/IEC JTC
1/SC 29/WG 1 N1646, March 2000
[6] W. Sweldens, “The Lifting Scheme: A custom-design
construction of biorthogonal wavelets”, Applied &
Computational Harmonic Analysis, vol.3, no.2, pp.186-
200, April 1996
[7] S. Masud, J.V. McCanny, “Design of silicon IP cores
for biorthogonal wavelet transforms” Journal of VLSI
Signal Processing, vol.29, no.3, pp.179-96, Nov. 2001
[8] M. Feretti, D. Rizzo, “Handling Borders in Systolic
Architectures for the 1-D Discrete Wavelet Transform for
Perfect Reconstruction” IEEE Transactions on Signal
Processing, Vol. 48, No. 5, pp 1365- 1378, May 2000

