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ABSTRACT 
 
This paper proposes a JPEG-2000 compliant architecture 
capable of computing the 2 -D Inverse Discrete Wavelet 
Transform.  The proposed architecture uses a single 
processor and a row-based schedule to minimize control 
and routing complexity and to ensure that processor 
utilization is kept at 100%.  The design incorporates the 
handling of borders through the use of symmetric 
extension.  The architecture has been implemented on the 
Xilinx Virtex 2 FPGA.   

 

1. INTRODUCTION 
 
The Inverse Discrete Wavelet Transform (IDWT) is an 
important part in the design of a wavelet based imaging 
system yet there have been very few architectures 
developed to compute the IDWT.  This may be based on 
the assumption that the forward DWT (FDWT) 
architectures is able to compute the IDWT simply by 
reversing the data flow.  This method, albeit simple, 
ignores the up-sampling and boundary techniques needed 
for perfect reconstruction.  Hence, resulting designs are 
inefficient.   

Typically a multi-processor scheme is favoured for 
IDWT computation.  In this, several 1-D DWT processors 
are used and configured to be either row or column 
processors.  This results in complex routing and control 
needed to synchronize the processors.  The larger multi-
processor cores have limited application when a high 
performance is required.  Also, the advent of System On a 
Chip (SOC) design has meant that smaller competent 
cores and ease of integration are desirable characteristics.   

In this paper, a single processor architecture is 
proposed that uses a simple scheduling algorithm to 
reduce the complexity of the circuit and achieve 100% 

processor utilization.  The size and efficiency of this 
design is superior to existing solutions.   
 

2. BACKGROUND 
 
The two dimensional FDWT of an image produces four 
sub-bands, the LL, LH, HL and HH sub-bands. although 
the FDWT of the LL sub-band may be computed again to 
produce the (LL)LL, (LL)LH, (LL)HL and (LL)HH sub-
bands.  These sub-bands may be reconstructed to produce 
the original image, e.g. the (LL)J, (LL)J-1LH, (LL)J-1HL 
and (LL)J-1HH sub-band can be recombined to produce the 
(LL)J-1 sub-band.   

There are two methods of implementing the IDWT, a 
level-first scheme in which an entire LL sub-band is 
synthesized before the reconstruction of the next finer 
sub-band.  If this is the case then  a N2/4 (where NxN is the 
size of the image) buffer memory is required is to store the 
LL data between resolutions.  The direct approach can be 
used in this way to compute the IDWT.  This computes 
the IDWT along the columns, storing the coefficients in 
memory before computing the IDWT along the rows.  The 
advantage of this approach is that processor utilization is 
kept at 100% throughout the computation.  The 
disadvantage is the large latency and storage space (N2/2) 
required.   

The alternative depth-first scheme does not wait until 
a sub-band is fully reconstructed before reconstructing the 
next.  This results in a significant reduction in latency, but 
design complexity is increased.   

Vishnawath and Owens proposed a common 
architecture for the DWT and IDWT [1].  In this paper 
parallels are drawn between the scheduling required for a 
depth-first computation of both the forward and inverse 
DWT, namely the Recursive Pyramid Algorithm (RPA) 
and the Inverse Recursive Pyramid Algorithm (IPRA).   

Chakrabarti and Mumford proposed an architecture 
using the IRPA that is able to compute the wavelet 
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Figure 1: Proposed Architecture 
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transform in O(N2) cycles [2].  This transform computes 
the IDWT in a row-major fashion and uses four parallel 
filters.  Two of its filters are used for computing the DWT 
along the rows and two for computing the column DWT.  
It also requires JN/2 storage (where J is the number of 
octaves to be reconstructured).  Two scheduling schemes 
are proposed in this paper which reduce latency or storage 
size.  However the processors used in this design are, at 
best, active 66% of the time.  This architecture also does 
not take into account the storage required for the column 
processors to store the input LL, LH, HL and HH 
coefficients.   

A similar depth-first approach was also adopted by 
Yu and Chen [3].  In this architecture a scheme similar to 
RPA is adopted.  However, this seeks to implement RPA 
in two dimensions simultaneously.  The architecture 
requires just NL (where L is the maximum filter length) 
storage space but the complexity of the controller and 
routing in this design is quite high.  This architecture also 
computes the IDWT in O(N2) cycles.   
 

3. PROPOSED ARCHITECTURE 
 
The architecture proposed in this paper improves the 
efficiency of previous designs by using a row-based 
scheduling method to achieve a higher processor 
utilization.  The results are better than what is possible 
using the RPA scheduling [4].  This has the effect of 
completely eliminating all the spare cycles in the RPA, 
therefore, completing the IDWT of the image in fewer 
cycles.   

The proposed architecture is shown in Figure 1.  It 
consists of a main memory unit, an LL buffer unit, a delay 
line and a single processing unit.  The coefficients are 
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Table 1: Input schedule to parallel processor 
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Figure 2: Parallel Processor  for the 9,7 DWT 

input in a raster scan manner along the rows.  These are 
input to a router and stored in the main memory unit.  The 
coefficients are input in a specific order.  In the first row 
the LL and HL sub-bands are input.  These are interlaced, 
e.g. coefficient LL(x, y) is input first, immediately 
followed by coefficient HL(x, y), followed by coefficient 
LL(x +1, y) and so on.  The HL and HH coefficients are 
input in a similar manner.   

These coefficients are then input to the parallel 
processor so that the column IDWT can be computed.  
This produces the L and H coefficients, which are stored 
in the delay line.  The schedule for the computation of the 
inverse DWT is shown in Table 1.   
 
3.1. Processor Design 
 
Two alternatives, lifting-based and filter-based, can be 
used when designing a DWT processor.  The lifting 
scheme requires considerably less multipliers than 
required by the convolutional filter, [6].  However, many 
extra pipeline registers must be inserted to a lifting-based 
design to maintain the correct order of computation.  This 
means that, whilst the lifting-based design is more 
efficient in terms of multiplications required for a serial 
transform, it does not translate well to a parallel 
implementation as the extra registers needed can result in 
a 50% increase in the amount of memory required.  A 
convolutional filter translates easily to a parallel 
architecture with a minimum of memory but with a 50% 
increase in the number of 
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multiplications required compared to the lifting-based 
design.   

The processor is shown in Figure 2.  This processor 
exploits the up-sampling of the IDWT by merging both 
the analysis coefficients of the low-pass and high-pass 
filter into the same structure.  This enables the 
computation of the low and high pass outputs 
simultaneously.  The inputs are also folded so as to exploit 
the symmetrical nature of the biorthogonal coefficients 
and therefore reduce the number of multiplications needed 
[7].   
 
3.2. Multi-Resolution Operati on 
 
If more than one resolution is required then a buffer is  
used to store the reconstructed LL coefficients from the 
previous octave(s).  This  buffer need only consist of N/2 
storage elements and can be implemented using either 
RAM or a register file.   

The operation of the multi-resolution architecture is 
similar to that of the first resolution circuit.  Initially the 
coarsest resolution (the Jth octave) is input, i.e. the 
LLJ/(LL)J-1HL sub-bands are input for the reconstruction 
of the LLJ-1 sub-band.  When an LLJ-1 coefficient is 
generated it is stored in the buffer until a complete row of 
LLJ-1 coefficients have been output.  The reconstruction of 
the LLJ-2 sub-band is achieved by inputting the LL J-1/(LL)J-

2HL sub-bands.  Again, the LLJ-2 coefficients are stored in 
the buffer until an entire row is completed.   

This process continues reconstructing the next LL 
sub-band until the LL1/HL1 sub-bands have been input to 
the parallel processor to reconstruct one full line of the 
image.  Now the LH1/HH1 coefficients are used to 
reconstruct a second line of the original image.  When this 
is completed the (LL)1 LH/(LL)1HH coefficients are used 
to generate a second row of LL1 coefficients.  Figure 3 
illustrates the scheduling method used for the row-based 
2-D IDWT.   

This row-based approach uses significantly less 
interconnections than the IRPA alternative [1] thus 
decreasing the complexity of the routing required.  The 
overall processor utilization of a row-based circuit is also  
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fixed at 100%, regardless of number of resolution levels 
used.   

Symmetric extension is used in JPEG-2000 to ensure 
perfect reconstruction [5].  It has been shown that 
processor utilization when using the RPA schedule 
significantly drops at the boundaries [8].  The row-based 
schedule used in this design performs significantly better 
than the RPA schedule at the image boundaries.  Since 
one row of a single resolution is processed at a time only 
one row controller is required.  Symmetric extension of 
the columns is handled by a separate controller.   
 
3.3. Delay Line Structure 
 
The structure of the delay line is shown in Figure 4.  The 
delay line also incorporates a symmetric extension router 
necessary for compatibility with the JPEG-2000 standard 
[5].  The delay line consists of L output registers, as well 
as L auxiliary registers, for symmetric extension.  This 
structure consists of four lines of registers, lines 1 -4.  The 
inputs to the registers on lines 1 and 4 are input to the 
parallel processor.  Line 2 is used to continuously receive 
input coefficients, thereby ensuring that there is no 
requirement to stall the input whilst the end of a row is 
being symmetrically extended.  Line 3 is used as a row of 
buffer registers to shift data backwards so as to 
symmetrically extend the end of the signal.  The signal is 
extended symmetrically at the start by routing the inputs 
from the coefficients stored in line 2 to the inputs of the 
registers in lines 1 and 4.  The layout of this structure 
mimics the natural fold in the centre of the biorthogon al 
wavelet transform thereby keeping the signals close 
together when the inputs are applied to the biorthogonal 
parallel filter.   

The advantages of using this structure , instead of a 
separate delay line and router, is that a constant data flow 
can be achieved.  Therefore, when a new row is input the 
structure can store the new row while simultaneously 
symmetrically extending the end of the old row.  This 
keeps the processor active 100% of the time.  Also, the 
routing required is shorter and more regular than that 
required by a standard router.   



 
Filter 
Pair 

Res 
Level 

Dimensions Slices Max 
Freq 

(MHz) 

Fps 

9,7 1 512x512 625 29.9 57.1 
9,7 4 512x512 813 27.2 51.9 
5,3 4 512x512 514 30.8 58.8 
9,7 3 352x288 741 29.6 145.9 

 
Table 2: Sample Implementation Results on Xilinx  

Virtex-2 XC2V250 -5 FPGA 
 

4. IMPLEMENTATION 
 
The circuit has been implemented on the Xilinx Virtex 2 
FPGA.  This device features embedded RAM and 
multiplier blocks, both of which were used in the design.   
The processor uses L/2 embedded multipliers and (L–
1)*N RAMBlocks are used for the main storage unit.  
Another RAMBlock is used as the LL Buffer.   

Symmetric Extension routers, as discussed in Section 
3, are used to ensure compatibility with JPEG-2000.  
Sample implementation results are shown in Table 2.   
   

5. CONCLUSIONS 
 
An efficient architecture for computing the Inverse DWT 
is  proposed.  This architecture retains efficiency 
regardless of the number of resolution levels required.  It 
is fully parameterisable in terms of resolution level, DWT 
coefficients, image size, data word-length and coefficient 
word-length.  The architecture uses a row-based 
scheduling method to maximise processor utilization.  
Although the memory used in this design is comparable to 
that required by other designs, the scheduling used also 
means that routing and control is considerably less 
complex than that required by the RPA schedule.   

The scheduling used in this architecture is flexible so 
that to achieve even higher performance two dedicated 
high and low pass processors (with constant coefficient 
multipliers) can be used to reduce, by half, the time taken 
from O(2N2) to O(N2) for reconstruction of a single octave 
and from O(3N2) to O(1.5N2) for a multi-resolution 
design.  The utilization of the two processors is also kept 
at 100%.   
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