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ABSTRACT
Most recent watermarking schemes differ from symmet-
ric schemes in that the detection process does not re-
quire the use of the same private key in both the em-
bedder and the detector. An advantage of such schemes
is that estimation of the watermark by collusion attack
is rendered impossible, so that the overall system is more
secure. Almost all second generation schemes to date are
also second-order; that is, they are based on the com-
putation of a quadratic form in the detector. In this
work, the authors propose a new class of watermarking
schemes which employ an nth-order detection process.
The scheme is based on a generalised differential modu-
lation scheme. We address the question of how to choose
the watermark signal in order to optimise the output of
the detection and examine the efficiency and security of
this new class of schemes.

1 INTRODUCTION

Digital media contents, such as audio, images or video
data, can now be distributed quickly and economically
by means of the Internet. However the widespread adop-
tion of electronic distribution by the software industry
has been impeded by the fear of copyright infringements
and illicit dissemination. In this context, digital wa-
termarking has emerged as a promising technique to
combat such piracy by embedding hidden information
into digital media contents which can be used by copy-
protection systems. The embedding process should not
adversely affect the quality of the contents. In addition,
it should be possible to detect robustly the watermark
using an authorised detector, even in cases where con-
tents have undergone transformation, such as compres-
sion or digital-to-analog conversion.
Watermarking can be understood as a communica-

tions problem in which the media contents constitutes
the channel for transmission of the watermark data [1].
The watermarking embedder seeks to exploit capacity
in the channel due to limitations in the human auditory
or visual system. Watermarking algorithms are there-
fore in direct competition with lossy encoders such as
MPEG [2] algorithms. In addition, large interference
and deformation of the channel may result from coders,
signal processing operations or malicious attacks, and
seriously narrow the capacity.

1.1 Blind, Symmetric and Asymmetric Water-
marking

First generation state-of-the-art watermarking schemes
are blind and symmetric. In blind schemes, decoding
is achieved without recourse to the original signal. In

symmetric schemes, the embedding of watermark infor-
mation depends on a private key which is also available
at the detector. Spread-spectrum watermarking [3, 4] is
the most common form of blind, symmetric watermark-
ing. A pseudo-random signal, z, is modulated on the
original contents and detection relies on an hypothesis
test on the result of a correlation of the received signal
with z. Hence, the signal z can be considered as a pri-
vate key, which must be available to both the embedder
and detector. The symmetry of such schemes presents
a weakness from the security point-of-view. In typical
copy-protection framework, the same detector must be
able to detect watermarks in lots of different contents.
It is then possible for an attacker to estimate the pri-
vate key by averaging a set of contents marked using the
same key in a so-called collusion attack. Hence, much re-
cent watermarking research has focused on asymmetric
watermarking schemes [5, 6], where the detection key is
different from the embedding key. For secure schemes,
the sole knowledge of the detection key should now be
insufficient to determine the embedding key.
In a unified analysis of asymmetric watermarking

schemes, Furon [7] showed that the asymmetric schemes
proposed to date are second-order schemes, in that the
detector determines the presence of the watermark by
calculating a quadratic form on the received signal.
Furon also showed that no scheme proposed to date is
fully secure in a public-key sense. If an attacker has full
knowledge of the detection process, then it is possible
to remove the watermark while maintaining the quality
of the original contents.
In this paper, we propose to use a higher-order de-

tection scheme with an aim towards increased robust-
ness and security. By chosing the watermark signal to
maximise the detection power, we show that it is pos-
sible to achieve greater efficiency with our high-order
scheme. Moreover, the technique is also robust to col-
lusion attacks and and exhibits increased security for
certain other types of attacks. Section 2 of the paper
outlines the original differential scheme [8] on which our
new class of schemes is based. The following section
generalises the scheme to an nth-order. The efficiency
of nth-order schemes is examined in Sections 5 and some
experimental results are described in Section 7.

2 SECOND-ORDER DIFFERENTIAL MOD-
ULATION

A differential modulation watermarking scheme was pre-
sented in [8, 9]. A similar differential scheme was pro-
posed also by Smith and Dodge [10]. These techniques
can be summarised as follows:



Given the original content s, a vector r of dimension
N is extracted from s. A permutation π is applied to
the components of r producing r̃ = rTΠ. A central,
random watermark signal w is then modulated on r̃ us-
ing a mixing function F (r̃, gw) and the resulting vector
rw is embedded back into the original content. For sim-
plicity, the embedding strength is taken to be constant
and given by the scalar g. The watermark signal w is
constructed with a special property such that

w(i+N/2) = w(i) for 1 ≤ i ≤ N/2 (1)

Assuming that r̃ has zero expectation and that w and
r̃ are independent, the autocorrelation

R(τ) =
N/2∑
i=1

r̃w(i)r̃w(i+ τ) (2)

has a non-zero expectation proportional to E{w2} for
τ=N/2. Hence, the detector determines the presence
of a watermark through an hypothesis test R(N/2)>

<Th
where Th is a threshold set with consideration of the
probability of false detection. It has been shown [7] that
this detection scheme can be written as the quadratic
form rTAr>

<Th where

A = ΠT

(
0 I
I 0

)
Π (3)

and I is the N/2×N/2 dimensional identity matrix.
As a result, the differential scheme is a second-order

detection scheme and is thus more secure to attack than
first-order symmetric schemes [7]. It is possible to gen-
eralise such differential process to produce higher order
schemes as proposed in the next Section. The security
and robustness of the generalised scheme are also exam-
ined

3 GENERALISED NTH-ORDER DIFFER-
ENTIAL MODULATION

A differential correlation of length S is a sum of the form

d(r, i, S) = riri+S/2+ ri+1ri+1+S/2+ · · ·+ ri+S/2−1ri+S

(4)
Given a vector r(0) of length N = TS, it is possible

to reduce it to a vector r(1) of T components, where the
ith component is

r
(1)
i = d(r(0), iS, S) . (5)

For N=S1S2 . . . Sk, let r(j) be the vector of length
Sj+1 . . . Sk whose ith component is given by

r
(j)
i = d(r(j−1), iSj , Sj) . (6)

Note that r(k) ≡ r(k) is a 1-dimensional (scalar) quan-
tity. Setting the initial vector r(0) to be extracted vector
r̃, a 2k-order differential detector determines that a wa-
termark is present if c > Th, where Th is a threshold
and c = r(k).
For values of n which are not powers of 2, nth-order

detectors can be derived similarly by reducing the length
of the initial vector using a series of differential correla-
tions. For example, a third-order scheme can be derived
for a vector of length N = TS = T (S − 1) + T by per-
forming T differential correlations of length S−1 on the
first T (S−1) terms, resulting in a vector of total length
2T , which is reduced to a single detection output value
by a further differential correlation of length 2T .

4 Using Side Information to Maximise the
Power of the Detector

It is necessary to choose a watermark embedding that
can be successfully detected by the nth-order detector.
In determining the watermark, we seek a watermarking
scheme which maximises the detection power. Consider
an additive mixing function,

F (r, gw) = r+ gw , (7)

and let the detection function be written as D(r). Given
that the embedding strength is much smaller than the
power of r, to first order we can write,

D(r+ gw) � D(r) + gw.∇D(r) . (8)

Hence, the watermark signal which maximises the
power of the detector is,

w = K∇D(r) , (9)

where the constant K is chosen to normalise the power
of w to one. Assuming that D is chosen such that
the expected value E{D(r)} = 0, then, with the above
choise of w, under hypothesis H1 that the watermark is
present, the expected value of the output of the detec-
tor is gK|∇D(r)|2 to the first order. In the following,
we examine the efficiency of the side-informed detector,
when D is the nth-order detector described in Section 3.

5 A Maximum Power Detector

The efficiency of the scheme is defined as,

e =
µD|H1 − µD|H0

σD|H1

. (10)

Given a particular detector D(r), Eq. (8) shows how
to choose the watermark w in order to maximise the
power. We now address the question of which function
D(r) has maximum power, over all possible functions.
Consider the class of nth-order polynomials of the input
vector.
In the following analyses, assume a constant embed-

ding strength g and let G = g2/σ2
r be the watermark to

signal power ratio.

5.1 Second Order Polynomial Detectors

A second-order polynomial dectector, can be written as
the quadratic form,

D(r) =
N∑

i=1

N∑
j=1

aijrirj . (11)

Assume that aii=0 ∀i so that the mean of the detector
is zero, without loss of generality, that aij = aji. Hence,

∂D

∂ri
= 2ai.r , (12)



where ai is the vector (ai1 . . . aiN ). The expected value
of the detector when the watermark is present is,

E{d|H1} = 2gσr

N∑
i=1

||ai|| . (13)

The standard deviation of the detector under the null
hypothesis is,

σd|H0 =
√
2σ2

r

√√√√ N∑
i=1

||ai||2 (14)

Using the fact that the maximum of
∑N

i xi is
√
N when

x is a vector of unit length, the maximum efficiency that
can be obtained from a second order polynomial corre-
lator

emax =
√
2NG . (15)

Note also, that the maximum efficiency of a first order
detector is

√
NG.

5.2 N-th Order Polynomial Detectors
A general nth-order polynomial detector can be written
as

Dn(r) =
∑

ai1,...,iN
ri1
1 r

i2
2 . . . riN

N (16)

where n=
∑N

k=1 ik. In the case where max (i1, . . . , iN ) =
1, it can be shown that the maximum efficiency is√
nNG to first order. Using the subscript to denote

the order of the detector, the nth order detector can be
written as

Dn(r) =
N∑

i=1

riDn−1(r1 . . . rN ) . (17)

Note that the expected value of the product of any pair
of terms in this sum is zero, and we can write, as a first
order approximation

V {Dn|H1} = Nσ2
rV {Dn−1|H1} . (18)

where V {X} is the variance of X. When the watermark
is present, the expected value of Dn can be written as

E{Dn|H1}= g
∑N

i=1

√
E

{(
∂Dn

∂ri

)2
}

= g
∑N

i=1

√
E

{
D2

n−1 +
∑N

j=1

(
rj

∂Dn−1
∂ri

)2
}

= gN

√
V {Dn|H1}+Nσ2

rE

{(
∂Dn−1

∂r

)2
}
(19)

Dividing by the standard deviation and simplifying, we
get

e2max(Dn) = NG

[
1 +

e2max(Dn−1)
GN

]
, (20)

and hence the result follows by induction.
Note that the differential detector of Section 3 has

maximum efficiency
√
nNG.

5.3 Polynomial Detectors of Higher Degree
Consider an nth-order detector of the following form:

D(r) =
N/2∑
i=1

rn−1
i rj (21)

where j is a randomly chosen index, which is matched
with each index i. Assuming that r is drawn from a
distribution which is symmetric about the origin, then
E{D} is zero for even values of n. Using the side-
informed watermarking method, the efficiency of this
detector is

e ≈
√
GN

2

(
(n− 1)

√
M2n−4

M2n−2
+ 1

)
(1−G/2(1+(n−1)2))

(22)
where Mi = E{ri} is the ith moment of the normalised
distribution of r.
For some distributions, this leads to a higher efficiency

than obtained for the first class of detectors. For exam-
ple, if r is uniformly distributed, then e ≈ n

√
GN/2.

However, this approximation only holds while Gn2 is
small. We can expect the power of the detector to de-
teriorate for large values of n.
A similar scheme can be devised for odd values of n,

for example

D(r) =
N/3∑
i=1

rn−2
i rjrk . (23)

6 Security

All of the schemes presented above can be protected by
permuting r before applying the embedder. The same
permutation must be available at the detector in order
to retrieve the watermark. In this sense the schemes are
not asymmetric.

7 Experimental Results

The nth-order watermarking schemes described above
have been tested for vectors r drawn from a uniform ran-
dom distribution. This is justified by the fact that we
generally apply a filtering function, h, to the extracted
vector prior detection. In watermarking applications, g
is very small and can be estimated by the detector to
first order. If h is designed such that σ2

h(r) � σ2
g , h(r) is

usually uniformly distributed and an additional gain of
14 dB can be achieved in the detection process [8]. This
gain was not included in the simulation results presented
in this paper. The experimental efficiency is calculated
on a large set of trials, and the power of the test is plot-
ted using

Pp = 1−Q(
σd|H0

σd|H1

Q−1(1− Pfa)− e) (24)

where Q is the cdf of the detector, which is approxi-
mated by assuming normality. Figures 1 and 2 show
the ROC curves of nth-order polynomial detectors when
N=2400 and G=-26 dB. As expected from the analysis
of Sections 5.2 and 5.3, detectors using polynomials of
higher degree show much better detection performance
than spread-sprectrum. A deterioration is however ob-
served for larger values of n. Figures 3 and 4 give the
power functions for both detectors as a function of G
for Pfa=10−4. At n=4, high-order polynomial detec-
tors show a additional gain of about 1 dB compared
to the same nth order differential scheme, which is in-
creased to 4 dB at n=7. This is in good agreement with
the expected

√
n/2 efficiency ratio of the two classes of

detectors.



10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1

n=2 (th.) n=3 (th.) n=4 (th.)
n=2 n=3 n=4

n=5 n=7 n=9
n=5 (th.) n=8 n=13

Pfa

P
p

Figure 1: ROC curves of a first degree polynomial de-
tector for G=-26 dB.
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Figure 2: ROC curves of a higher degree polynomial
detector for G=-26 dB.
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Figure 3: Power functions for a first degree polynomial
detector with Pfa=10−4.
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Figure 4: Power functions for a higher degree polyno-
mial detector with Pfa=10−4.

8 Conclusions

A new watermarking scheme has been presented which
employs an nth-order detection process. It has been
shown that this scheme exhibits greater efficiency than
has been achieved in the past. It also has some advan-
tages in terms of security. The scheme depends on a
private permutation key which is used in both the em-
bedder and detector and hence is not truly asymmetric.
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