
A RECURSIVE ALGORITHM FOR THE GENERATION OF

 SPACE-FILLING CURVES

Greg Breinholt and Christoph Schierz

Institute for Hygiene and Applied Physiology

Swiss Federal Institute of Technology Zürich (ETHZ)

CH-8092 Zürich, Switzerland

email: breinholt@computer.org schierz@iha.bepr.ethz.ch

ABSTRACT

Space-filling curves have intrigued both artists and

mathematicians for a long time. They bridge the gap

between aesthetic forms and mathemtical geometry.

To enable construction by computer, an efficient

recursive algorithm for the generation of space-filling

curves is given. The algorithm is elegant, short and

considerably easier to implement than previous

recursive and non-recursive algorithms, and can be

efficiently coded in all programming languages that

have integer operations. The algorithmic technique is

shown applied to the generation of the Hilbert and a

form of the meandering Peano curve. This coding

technique could be successfully applied to the

generation of other regular space-filling curves.

1. INTRODUCTION

In mathematics, space-filling curves are commonly

used to reduce a multi-dimensional problem to a one-

dimensional problem; the curve is essentially a linear

transversal of the discrete multi-dimensional space.

Although it was Peano [10] that produced the first

space-filling curves, it was Hilbert [5] who first

popularized their existence and gave an insight into

their generation. Hilbert and Peano curves belong to

the class of FASS curves; an acronym for space-

filling, self-avoiding, simple and self-similar [11].

FASS curves can be thought of as finite, self-

avoiding approximations of curves that pass through

all points of a square. The Hilbert curve is a

particular form of the FASS curve that scans a 2m ×

2m array of points while never maintaining the same

direction for more than three consecutive points. The

Peano curve scans a 3m × 3m array of points while

never traveling in the same direction for more than

five consecutive points. Figure 1 shows an example

of a Hilbert curve, and a meandering Peano curve.

Figure 1. Hilbert curve (32 ×× 32 points) and

meandering Peano curve (27 ×× 27 points).

Though space-filling curves were discovered

over a century ago their use has been sporadic but

varied. Interesting examples of their use have been in

data structures [1], traveling salesman problems [9],

image analysis [6], digital halftoning [12], pattern and

texture analysis [7], cryptology [2] and data

compression [3].

Most of the techniques for curve generation are

interpretations of Hilbert's original suggestion to

continually divide a plane into four parts, each of these

parts into four parts, and so on, calculating the

necessary plotting points as the division proceeds. This

continual dividing of the plane continues until the

required curve resolution is obtained, i.e. in a typical

recursive procedure. The exact method to determine

the points was not given by Hilbert (who worked

before the invention of computers) and this has lead to

the many different programming code solutions to the

problem [4, 8, 13].

This paper presents a simple algorithm that can

quickly and efficiently generate the points of the

Hilbert and Peano curves using the simplest recursive

technique.

2. IMPLEMENTATION

The basis of this implementation is the deconstruction

of the curve into a set of unit shapes, as shown in

Figure 2 for the Hilbert curve.

The relative position and rotation of each unit

shape is defined by its sequential position in the curve

generation. As the resolution of the curve increases,

more unit shapes are required for its description, but

the principle remains true to Hilbert's original

proposition of dividing each part into smaller parts.

Figure 2. De-constructed unit shapes for different

curve resolutions. The circles represent the start

points.

As the curve progresses, the rotation of each unit

shape follows a pattern that must be efficiently coded

to describe both the rotation of the unit shape and its

start and end points, so that the points of the curve can

be plotted in the correct position and the correct order.

The scheme chosen codes the rotation of each unit

shape into two variables: i1 and i2, which represent

the starting point and end point respectively, as shown

in Figure 3.

0

1

0

1

i1: Start point i2: End point

Figure 3. Coding system to describe the start and

end points of the unit shape.

Variable i1 is given the value 0 when the starting

point is in the lower left corner of the unit shape, and

the value 1 when the starting point is in the upper

right corner. Variable i2 is given the value 0 when the

end point of the unit shape is in the lower right corner,

and the value 1 when the end point is in the upper left

corner. Figure 4 illustrates this coding system when

applied to four of the possible orientations of the unit

shape used to construct the curve.

(i1,i2) = (0,0) (1,1) (0,1) (1,0)

Figure 4. The coding system applied to four of the

possible orientations of the unit shape.

3. IMPLEMENTATION RESULTS

Program code is given for the generation of the Hilbert

and Peano curves in Listing 1. The procedures work

by recursively calling themselves, modifying their

parameters with each call, until they reach the

smallest unit shape for the next section of the curve to

be plotted. The recursive algorithms could be modified

so that the last recursive calls (i.e. those with lg = 1)

directly produce the next four points, rather than

calling the recursive functions again. This would

greatly enhance the efficiency of the algorithms, but

the performance gain is not so great during runtime,

as the extra recursive calls made in the original

algorithms are relatively time inexpensive.

The number of calls to the Hilbert procedure can

be easily calculated:

()Number Calls
1

3
1

2 2W W= + −

W = curve width (2m; e.g. 1, 2, 4, 8, 16, 32, 64, ...)

1st term: calls that actually produce a point,

2nd term: due to recursive calling to find the points.

This gives the ratio:

Points

Calls

3W

4 W 1

2

2=
−

 à 75% for W >= 8

At curve widths greater than 8, the algorithmic

calling efficiency (number of points generated/number

of calls to the recursive procedure) approximates to

75%. This is a relatively high ratio and demonstrates

an efficient recursive procedure.

The recursive algorithm could be modified so

that the last recursive calls (i.e. those with lg = 1)

directly produce the next four points, rather than

calling the Hilbert function again. This would greatly

enhance the efficiency of the algorithm, but the

performance gain will not be so great during runtime,

as the extra recursive calls made in the original

algorithm are relatively time inexpensive. This

optimizing technique will speed the performance of

the algorithm, but detracts slightly from its clarity, and

so the algorithm given is the simplest, while not the

most efficient.

4. SUMMARY

The same technique could be applied to other space-

filling curves by identifying their unit shape,

describing the points that make this unit shape, then

developing a simple recursive procedure to generate

all the points that make this curve from the unit shape.

Another way to describe the process, as in the Hilbert

curve, is that the square space is divided into a 2 x 2

array (or a 3 x 3 array for the Peano curve), and then

further divided until the required resolution of curve is

obtained. It would be possible to divide the same

square space into a 4 x 4, or higher, and then by a

simple modification of the recursive algorithm

(requiring more calls for larger arrays), produce the

required points. This would enable the construction of

other forms of regular space-filling curves.

5. REFERENCES

[1] Asano, T., Ranjan, D., Roos, T., Welzl, E., and
Widmayer, P., “Space Filling Curves and their
Use in the Design of Geometric Data Structures,”
presented at LATIN '95: Theoretical Informatics,
1995.

[2] Bertilsson, M., Brickell, E., and Ingemarsson, I.,
“Cryptananalysis of Video Encryption Based on
Space-Filling Curves,” presented at Advances in
Cryptology - EUROCRYPT '89, 1989.

[3] Bially, T., “Space-Filling Curves: Their
Generation and Their Application to Bandwidth
Reduction”, IEEE Trans. Information Theory,
vol. IT-15, pp. 658-664, 1969.

[4] Cole, A. J., “A Note on Space Filling Curves”,
Software-Practice and Experience, vol. 13, pp.
1181-1189, 1983.

[5] Hilbert, D., “Über die stetige Abbildung einer
Linie auf ein Flächenstück”, Mathematische
Annalen, vol. 38, pp. 459-460, 1891.

[6] Lamarque, C.-H. and Robert, F., “Image Analysis
using Space-filling Curves and 1D Wavelet
Bases”, Pattern Recognition, vol. 29, pp. 1309-
1322, 1996.

[7] Lee, J.-H. and Hsueh, Y.-C., “Texture
Classification Method Using Multiple Space
Filling Curves”, Pattern Recognition Letters, vol.
15, pp. 1241-1244, 1994.

[8] Musgrave, K., “A Peano Curve Generationm
Algorithm,” in Graphics Gems II, The Graphic
Gems Series, J. Arvo, Ed. Boston: AP
Professional, 1991, pp. 25.

[9] Norman, M. G. and Moscato, P., “The Euclidean
Traveling Salesman Problem and a Space-Filling
Curve”, Chaos, Solitons & Fractals, vol. 6, pp.
389-397, 1995.

[10] Peano, G., “Sur une Courbe qui Remplit Toute
une Aire Plane”, Mathematische Annalen, vol.
36, pp. 157-160, 1890.

[11] Prusinkiewicz, P. and Lindenmayer, A., The
Algorithmic Beauty of Plants. New York:
Springer-Verlag, 1990.

[12] Velho, L. and Gomes, J. d. M., “Digital
Halftoning with Space Filling Curves”,
Computer Graphics (SIGGRAPH '91), vol. 25,
pp. 81-90, 1991.

[13] Witten, I. A. and Wyvill, B., “On the Generation
and Use of Space-filling Curves”, Software-
Practice and Experience, vol. 13, pp. 519-525,
1983.

Listing 1. Code in the C language to generate the Hilbert and Peano Curves.

#include <stdio.h>
#include <math.h>

void main(void) {
int width = 64; /* Curve width must be 2m . */
Hilbert(0, 0, width, 0, 0); /* Start Hilbert recursion. */
width = 27; /* Curve width must be 3m . */
Peano(0, 0, width, 0, 0); /* Start Peano recursion. */

}

void Hilbert(int x, int y, int lg, int i1, int i2) {
/* initial x, initial y, curve width, initial i1, initial i2 */
if (lg == 1) { /* Unit shape reached. */

printf("%d%c%d\n",x,',',y); /* Output coordinates. */
return; /* Exit recursion. */

}
lg >>= 1; /* Divide by 2. */
Hilbert(x+i1*lg, y+i1*lg, lg, i1, 1-i2);
Hilbert(x+i2*lg, y+(1-i2)*lg, lg, i1, i2);
Hilbert(x+(1-i1)*lg, y+(1-i1)*lg, lg, i1, i2);
Hilbert(x+(1-i2)*lg, y+i2*lg, lg, 1-i1, i2);

}

void Peano(int x, int y, int lg, int i1, int i2) {
/* initial x, initial y, curve width (3^m), initial i1, initial i2 */
if (lg == 1) {
printf("%d%c%d\n",x,',',y); /* Output coordinates. */
return;/* Exit recursion. */
}
lg = lg/3; /* Divide by 3. */
Peano(x+(2*i1*lg), y+(2*i1*lg), lg, i1, i2);
Peano(x+((i1-i2+1)*lg), y+((i1+i2)*lg), lg, i1, 1-i2);
Peano(x+lg, y+lg, lg, i1, 1-i2);
Peano(x+((i1+i2)*lg), y+((i1-i2+1)*lg), lg, 1-i1, 1-i2);
Peano(x+(2*i2*lg, y+(2*(1-i2)*lg), lg, i1, i2);
Peano(x+((1+i2-i1)*lg, y+((2-i1-i2)*lg), lg, i1, i2);
Peano(x+(2*(1-i1)*lg), y+(2*(1-i1)*lg), lg, i1, i2);
Peano(x+((2-i1-i2)*lg), y+((1+i2-i1)*lg), lg, 1-i1, i2);
Peano(x+(2*(1-i2)*lg), y+(2*i2*lg), lg, 1-i1, i2);

}

/* Note. The multiplier 3 can be used to space the points aesthetically for plotting:
printf("%d%c%d\n", x*3, ',', y*3); */

