
ADAPTIVE CHANNEL EQUALIZATION USING
CLASSIFICATION TREES

Taneli Haverinen, Arto Kantsila, Mikko Lehtokangas, Jukka Saarinen
Digital and Computer Systems Laboratory, Tampere University of Technology,

P.O.Box 553, FIN-33101 Tampere, FINLAND
e-mail: tanelih@cs.tut.fi

ABSTRACT

This paper focuses on adaptive equalization of binary
signals in a baseband digital telecommunication system.
Equalization and detection are considered as a classifica-
tion problem. Fixed-length sequences of received obser-
vations form a multidimensional signal space, which can
be partitioned using the proposed classification tree algo-
rithm. Top-down approach is used in tree induction, and
splitting is done based on information gain criterion.
Overfitting is avoided by utilizing a pruning algorithm.
The advantages of this method are its simplicity and
straightforwardness and thereby the reduction of compu-
tational complexity compared to other well performing
equalizers. Experimental results and comparison with a
cascade-correlation trained multilayer perceptron neural
network equalizer are given.

INTRODUCTION

Radio channels are typically time-variant and the
channel impulse response is unknown. To mitigate inter-
symbol interference (ISI) resulting from multipath propa-
gation of the signal, a variety of adaptive equalizers have
been developed and introduced. The maximum likelihood
sequence estimation implemented by the Viterbi algo-
rithm [1] has been considered as an optimum method to
combat the ISI, but it also involves high computational
complexity. On the other hand, linear equalizer is easily
implemented using an adaptive least mean square (LMS)
algorithm [2], but its performance is unsatisfactory in the
case of nonlinear ISI or deep spectral nulls in the channel
frequency response. The efficiency of a linear equalizer
can be improved to some extent by removing part of the
ISI from the present estimate as is done in decision feed-
back equalization [3].

The methods given above represent the traditional
way of viewing equalization from a communication theo-
retic point of view. Our approach is to consider equaliza-
tion and detection as a classification problem. Given the
observation sample sequences of length K, each sequence
maps to a point in the K-dimensional signal space. De-
tection is accomplished by partitioning the signal space
into appropriate decision regions. Neural networks are
known to be superior classifiers, but they involve a con-

siderable amount of learning by adjusting the weights.
Classification trees are able to solve linearly non-
separable problems by placing consecutive axis-parallel
decision boundaries in a straightforward manner. The
proposed classification tree method significantly reduces
the computational load while still offering performance
comparable to neural networks.

SYSTEM MODEL

Our work is loosely based on the Global System for
Mobile Communications (GSM) [4]. The information
signal consists of bursts of binary symbols taking values
of either 1 or –1. Each burst begins with a training se-
quence, which is 26 bits in length and known to the re-
ceiver. Therefore it can be used to adapt the equalizer.
The latter part of the burst contains 116 bits of data pay-
load, which is not known to the receiver. The total length
of the burst is 142 bits, and the burst is oversampled at
the transmitter by a factor of 3. The information signal is
transmitted as two-leveled baseband signal.

The communication channel used in simulations has
both ISI and additive white Gaussian noise. The ISI part,
resulting from multipath propagation, is modeled as a
finite impulse response (FIR) discrete-time filter. We can
formalize the relationship between the channel outputs y
and the transmitted binary signal a with the following
equation

∑
=

− +=
N

i
ninin ahy

0

δ (1)

where hi are the channel coefficients and  represents
additive noise.

CLASSIFICATION TREE EQUALIZER

Our classification problem is to generate a predictive
function which takes a selected portion of channel out-
puts y as attributes and returns an estimate of the class of
the object, i.e. the transmitted symbol an, as its output.
Classification trees perform the prediction by applying a
sequence of tests on the attributes [5]. In our application
these tests are univariate, i.e. only one attribute at a time
is tested, and a sequence of tests can be represented as a
binary tree. The outcome of the test determines which



branch to take when proceeding to the next level of the
tree. Univariate tests produce axis-parallel decision
boundaries and progressive partitioning of the signal
space as consecutive tests are performed from the root to
a leaf. Each leaf is attached with a prediction â of a class
label a. An illustrative example is shown in Fig. 1.

Before making use of a tree it must be generated using
a set of training examples and a suitable tree induction
algorithm. We have adopted so-called top-down approach
[5]. Growing of the tree begins with one single node, the
root, to which the whole set of training examples is as-
signed. These examples are divided into two subsets by
creating and applying a test on the attribute values, ac-
cording to some splitting criterion. Let us give a notation
split for an {attribute, treshold level} -combination. From
all reasonable splits the algorithm picks the one, which by
some greedy criterion most efficiently separates objects
belonging to different classes. Then the algorithm ad-
vances to the next level and performs exactly the same
procedure on both of the example subsets. Each time a
test is attached to the corresponding node. This splitting
of the example data is continued until all the training ex-
amples at a node belong to the same class or have exactly
the same attribute values.

We have used information gain criterion in the tree-
growing phase [6]. Information gain is a measure of the
expected reduction in entropy caused by partitioning the
training set according a particular split. In case of target
classes -1 and 1, entropy of the collection of training ex-
amples S is defined as

121121 loglog)( ppppSEntr −−= −− (2)

where p-1 and p1 are the proportions of the two classes in
S. Low entropy implies good homogeneity within the

examples belonging to a same cluster, and therefore the
split resulting with the best information gain is used as a
splitting test. The information gain of split, relative to S,
can be expressed for binary trees as

)()()(),( r
r

l
l SEntr

S

S
SEntr

S

S
SEntrsplitSGain −−= (3)

where Sl and Sr  are the left and the right subset of S ac-
cording to split. For discrete-valued attributes finding the
set of candidate splits would be unambiguous, but our
attributes are all continuous-valued. A common practice
is to place candidate thresholds dynamically midway
between adjacent examples that differ in their target clas-
sification.

To avoid the problem of overfitting, we have imple-
mented a pruning algorithm. Pruning means converting
some internal nodes into leaves by collapsing the subtree
rooting at them and assigning class labels to them [5]. We
have used MDL-SLIQ algorithm [7], which is based on
the idea of finding the minimum description length
(MDL) of the objects’ classes in the training data. The
description consists of two parts: the model and the ex-
ceptional data. Induced tree classifies the training data
completely so that there is no exceptional data. However,
the model, i.e. the structure of the tree, may be unrea-
sonably complicated for example due to noise. MDL has
turned out to give a good and intuitive compromise be-
tween the model complexity and the exceptional data.
The length of the description is measured as the number
of symbols needed to encode it. This poses a problem,
which limits the feasibility of the MDL principle: the
most efficient encoding scheme should be available.
MDL-SLIQ is an algorithm that makes some simplifica-
tions in measuring the coding lengths. It traverses the

Figure 1: a) Simple binary tree with three splitting nodes and four leaves, which are attached with a class label. b) Three-
dimensional signal space representation of that same tree.

attribute: 1

<= 0.0043359

attribute: 2

<= 1.6994

class: 1

attribute: 2

> 1.6994

class: -1

attribute: 1

> 0.0043359

attribute: 2

<= -1.6789

class: 1

attribute: 2

> -1.6789

class: -1

a) b)



maximum tree in bottom-up order and turns the current
node into a leaf by cropping both child nodes away in
case it provides a shorter description length. The majority
class among the examples falling on a leaf will determine
the prediction â attached to that leaf.

EXPERIMENTAL RESULTS

In this study we present simulation results for our tree
classifier and compare them to the corresponding results
achieved with a cascade-correlation trained multilayer
perceptron neural network equalizer [8]. Tree induction
and neural network learning are performed for each burst
separately. We used a fixed channel impulse response
h=[h0 h1 … h4]=[0.5 –0.3 0.6 –0.7 –0.8]T , and signal to
noise ratio (SNR) was varied from 5 to 30 dB. The
equalizer can be expressed as

),...,,(

),...,2,1(ˆ

11 +−+−++=
=

Koffsetnoffsetnoffsetn

n

yyyf

Kattributeattributeattributefa
(4)

where ân is an estimate of the symbol an and f is a nonlin-
ear equalizing function, i.e. a classification tree or a neu-
ral network. In this representation offset stands for ad-
justing the indexing between y and a. Radio path delay is
omitted so that an and yn represent the same time instant.
Therefore the delay of the signal is totally determined by
the phase response of the channel. Positive offset means
that the equalizer is actually noncausal, it is waiting also
for future values of y to make a decision ân for the present
data bit an. It would usually be desirable to capture all the
energy of the channel’s response to a transmitted symbol,
but in some applications increasing offset may have to be
restricted in consequence of increasing decision delay. If
the channel is very noisy, the importance of choosing the
attributes is indisputable, as is clearly visible in Fig. 2. In

case of only two attributes, offset = 4 would be the only
choice to achieve good performance. Using more attrib-
utes instead gives additional margin in choosing offset,
i.e. an equalizer with more attributes is less sensitive to
mismatched offset. The reason why a moderately long
delay is desirable in this case is clarified by observing
that the tail coefficients of h have the greatest magnitude.

We are able to draw yet another conclusion by study-
ing Fig. 2. Approximately the same performance can be
achieved with any number of attributes upward of two.
The inductive bias of a tree classifier is a preference for
small trees over large trees. Therefore only few consecu-
tive attributes are actually used in most cases, and the
structure of the tree is less frequently dependent of the
value of K. That feature strengthens the feasibility of
classification trees, as overcomplex models are not very
likely. In fact Fig. 3 a) indicates that it is questionable
whether a pruning algorithm should be used at all. Prun-
ing simplifies the model at the expense of accuracy. The
utilization of pruning is better justified in applications
where, in addition to noise corruption, the number of
training examples is large.

Based on Fig. 2 we chose the optimum value offset =
4 to be used in our overall performance comparison,
which is given in Fig. 3. We can clearly see that pruning
results in a considerable decline of classification per-
formance regardless of SNR or the number of attributes
used. The similarity of all curves suggests that structures
of pruned trees are exceedingly simple and mostly alike.
Let us concentrate on non-pruned trees for a while. Neu-
ral network equalizer performs slightly better in case of
severe noise corruption, but when SNR exceeds 15 dB
the differences are not significant anymore. On the other
hand, the number of floating point operations used in
learning is much smaller with tree classifiers. The ex-
treme case of SNR = 5dB and two attributes gives a com-
plexity ratio of 38 for the benefit of the tree classifier.
Computational complexity of the neural network depends
on the number of inputs (in our case 2), training epochs
(50) and hidden units (max. 6).

CONCLUSIONS

In this paper, a classification approach to the equali-
zation and detection process has been presented. We dis-
cussed how signal space interpretation, used for example
in pattern analysis, can be used in our application. Classi-
fication trees are a competitive choice when simplicity
and comprehensibility of classifier structure are desired.
For future work, a few things are suggested. Firstly, in-
formation gain criterion does not fit perfectly for numeri-
cal attributes and noisy environments, as it does not con-
sider distances between distinct examples at all. Further-
more, we have not investigated alternative pruning meth-
ods, it is possible that clear improvements could be
achieved. Our prospective research will concentrate espe-

0 1 2 3 4 5 6 7
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

B
E

R

offset

2 attr
3 attr
4 attr
5 attr
6 attr

Figure 2: Classification tree (non-pruned) bit error rate
as a function of offset.  SNR = 5, average of 10 bursts
was calculated.



cially on more realistic system model and the matters
discussed above.

REFERENCES

[1] G. D. Forney Jr., "Maximum likelihood sequence
estimation of digital sequences in the presence of in-
tersymbol interference," IEEE Trans. Inform. The-
ory, vol. IT-18, May 1972, pp. 363-378.

[2] J. G. Proakis, Digital Communications. New York:
McGraw-Hill, 1995.

[3] S. U. H. Qureshi, "Adaptive equalization", Proc.
IEEE, vol. 73, Sept. 1985, pp. 1349-1387.

[4] M. Mouly and M-B. Pautet, The GSM System for
Mobile Communications. Palaiseau: Mouly & Pautet,
1992.

[5] S. Kuusisto, Application of the PMDL Principle to
the Induction of Classification Trees. Dr.Tech. thesis,
Tampere University of Technology, Publications
233, 1998.

[6] T. Mitchell, Machine Learning. New York:
McGraw-Hill, 1997.

[7] M. Mehta, R. Agrawal and J. Rissanen, "SLIQ: a fast
scalable classifier for data mining," Proc. of the 5th

International Conference on Extending Database
Technology. Avignon, France, March 1996.

[8] A. Kantsila, M. Lehtokangas and J. Saarinen,
"Adaptive equalization of binary data bursts with
cascade-correlation trained multilayer perceptron
networks," Proc. of the 18th IASTED International
Conference on Modelling, Identification and Control
(MIC’99). Innsbruck, Austria, Feb. 1999, pp. 438-
441.

Figure 3: a) Bit error rate after classification. Black solid lines represent trees prior to pruning, gray lines represent pruned trees.
BER of neural network equalizer is plotted with dashed line. All results are achieved as an average of ten bursts, using offset = 4.
b) The number of floating point operations used in learning. Pruning did not affect the complexity noticeably.

5 10 15 20 25 30
0

1

2

3

4

5

6
x 10

5

flo
ps

SNR

neural, 2 attr
tree, 6 attr  
tree, 4 attr  
tree, 2 attr  

5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1
B
E
R

SNR

all pruned trees

tree, 6 attr  
tree, 4 attr  
tree, 2 attr  
neural, 2 attr

a)

b)


