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ABSTRACT

The idea of software radio requires an expansion of digital
signal processing towards the antenna. Hence, for convert-
ing the received signal to baseband, the need of efficient high
speed digital down converters arises. In [1] digital down con-
version was identified as one of the ’critical functionalities’
because it has to run at a relative high sample rate, and has
to provide high resolution. The common approach for digi-
tal down conversion (DDC) is the so called ROM table ap-
proach where the samples of the input signal are multiplied
with amplitude values of the sine- and cosine-function stored
in ROM. To achieve high resolution this technique requires a
large look-up table which means large chip area, high power
consumption, lower speed, and increased costs.
In this paper a CORDIC-based digital down converter is de-
scribed. It enables to reduce the size of the look-up table
considerably. Additionally to previous publications, this pa-
per provides an overall worst case quantization error estima-
tion that facilitates the dimensioning of the CORDIC-DDC.

1 INTRODUCTION

DDC is conventionally performed by multiplying the digi-
tized input signal with amplitude values of sine- and cosine-
functions stored in a ROM table which could easily be ad-
dressed by the output of an overflowing phase accumulator
(Figure 1). However, for high resolution (n bit) this tech-
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Figure 1: Conventional I/Q-DDC using the ROM table ap-
proach

nique requires a large look-up table (~2n¥n bit) resulting in
large chip area, high power consumption, lower speed, and
increased costs.

An approach to overcome this drawback is the calculation
of the corresponding sine- and cosine-values by means of
CORDIC [2, 3, 4] with the main advantage of using only
a small look up table (~n¥ n bit). The major drawback of
the CORDIC approach is the increased circuit complexity.
However, if used in the context of digital down conversion
or frequency synchronization, the additional hardware effort
is partly compensated because there is no need for explicit
multipliers as will be shown in this paper.

2 THE CORDIC-ALGORITHM

The CORDIC (COordinateRotationDigital Computer) was
developed by Volder [2] in 1959 as an iterative algorithm to
convert between polar and cartesian coordinates using shift,
add, and subtract operations only.

In the circular rotation mode the CORDIC computes the
cartesian coordinates of the target vectorvn=[xn yn]T by
rotating the input vectorv0=[x0 y0]T by an arbitrary an-
gle f = z0. This vector rotation is realized by perform-
ing a sequence of successively decreasing elementary ro-
tations with the basic rotation anglesfi = ±arctan(2-i) for
i = 0, . . . , n- 1. The resulting iterative process can be de-
scribed by the following equations

xi+1 = xi - di yi 2-i (1)

yi+1 = yi + di xi 2-i (2)

zi+1 = zi - di arctanI2-iM (3)

where

di =
ÏÔ
ÌÔ
Ó

-1 if zi < 0

+1 otherwise
. (4)

specifies the direction for each elementary rotation. Eq. (3)
describes an angle accumulator. Aftern iterations the
CORDIC equations result in

xn ª An[x0 cos(z0) - y0 sin(z0)] (5)

yn ª An[y0 cos(z0) + x0 sin(z0)] (6)

zn ª 0 (7)



where

An =
n

‰
i=0

0
1+ 2-2i (8)

is the CORDIC scaling factor which depends on the total
number of iterationsn. xn andyn contain the coordinates
of a scaled version of thez0-rotated vector[x0 y0]T . The ac-
curacy is determined by the number of iterationsn and the
word length of the CORDIC processor (s. section 4).

It should be noted that Eqs. (1–3) converge for rotation
angles between-p2 and p2 only. In order to increase the con-
vergence range for all rotation angles|z0| £ p, Volder [2]
proposes an initial iteration which rotates the input vector by
±p2:
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where

d =
ÏÔ
ÌÔ
Ó

-1 if z < 0

+1 otherwise
. (12)

3 THE CORDIC-DDC

After the brief review of the CORDIC algorithm it will be
shown how it can be used for digital down conversion. Sub-
stituting the output signals of the conventional DDC of Fig-
ure 1 into Eqs. (5) and (6) yields the structure of a CORDIC-
based DDC. It is shown in Figure 2.
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Figure 2: CORDIC-based I/Q-DDC

At each clock interval,y0 is loaded with the current sam-
ple sBP(k) of an IF-input signal, andz0 with the current sam-
ple f(k). The latter is supplied by an overflowing phase ac-
cumulator which generates the oscillator frequencyf0. x0 is
set to zero. Aftern+ 1 iterations the CORDIC provides the
samplesI (k) andQ(k) of the down-converted in-phase and
quadrature-phase signal with a resolution of approximatelyn
bits. In order to achieve this, only a very small look-up table
is needed. It contains the(n+ 2) basic rotation angles.

Still, the main problem of the CORDIC is thatn+ 1 itera-
tions have to be performed for each signal sample, requir-
ing an internal clock rate being(n + 1)-times higher than

the sample rate of the signal. However, the CORDIC can
be implemented by a pipelined architecture [5, 6]. Thus,
the CORDIC-DDC becomes suitable for high speed appli-
cations. An additional advantage of such an implementation
is that there is no need for a look-up table anymore, since
the invariant elementary rotation angles can be hard-wired to
each stage.

Further it should be noted that the hardware effort of the
CORDIC is approximately that of three multipliers with the
respective word length. This means that the CORDIC-DDC
has only one and a half of the hardware complexity of the
common DDC (two explicit multipliers), while saving a large
amount of chip area because no ROM table is needed. In this
context it is worth mentioning that without any additional
hardware effort the CORDIC can easily be used as a com-
plex image rejection mixer (s. Figure 4) e.g., for frequency
synchronization purposes. Comparing with the conventional
image rejection mixer of Figure 3 reveals that the CORDIC
even replaces four multipliers and the look-up table.
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Figure 3: Conventional image rejection mixer
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Figure 4: CORDIC-based image rejection mixer

4 QUANTIZATION ERROR BOUND

In order to dimension the CORDIC-DDC it is necessary to
estimate the achievable accuracy. For that purpose we derive
a worst case error bound of the overall quantization error of
the CORDIC algorithm. With respect to the high-speed ap-
plication as a digital down-converter, only fixed point im-
plementations are considered. An approach to this problem



including CORDIC processors with floating point arithmetic
has been presented in [7], still, without considering the quan-
tization error produced in the CORDIC angle accumulator
(Eq. (3)).

After an initial iteration (Eqs. (9)-(12)), andn further iter-
ations (Eqs. (1)-(4)), the maximum overall quantization error
of a fixed point CORDIC processor can be calculated as fol-
lows:

|Dvn| = |vn - v*| £ |v*| ◊ I |dn| + |qn| M + | f n| (13)

where v* = [x* y*]T is the ideal output vector (theoreti-
cally produced by a CORDIC processor with infinite preci-
sion arithmetic after an infinite number of iterations), and
vn = [xn yn]T is the output vector computed by the finite pre-
cision CORDIC.dn stands for the so-called(angle) approxi-
mation errorand f n for the rounding error vector, both de-
rived in [7]:

|dn| £ 2-(n-1) for n ≥ 1 (14)
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with

k(i) =
0

1+ 2-2i . (16)

Thereby,e0 considers the maximum absolute input quanti-
zation error inx0 andy0, while e = 2-b stands for the maxi-
mum absolute rounding error inxi andyi due to bit truncation
with fixed point arithmetic (b fractional binary digits) which
is done in each iteration.

As an extension to the results in [7],qn describes the re-
sulting error component invn due to the rounding errors inzi

that are caused by the input quantization ofz0 and the quan-
tized fixed point representation of the basic rotation anglesp

2
and arctan(2-i), respectively:

|qn| £
ÏÔ
ÌÔ
Ó

s0 + ns for 0 £ n £ b+ 1

s0 + (b+ 2) s for n > b + 1
(17)

s0 represents the maximum absolute phase input quantiza-
tion error, ands the maximum absolute rounding error of
the basic rotation angles.

5 SIMULATION RESULTS

In this section some simulation results are presented in order
to verify the quality of the derived maximum quantization er-
ror bound. Therefore, Eqs. (13)-(17) are evaluated for differ-
ent values forn andb. For simplification the input quantiza-
tion errore0 is set to zero, which models an ideal analog-to-
digital converter (ADC). The input signal is set to constant
one. With the so computed worst case error estimates the
minimum SNR (signal to [quantization] noise ratio) can be
estimated.

In Figure 5 these results are compared with the minimum
SNR values obtained by means of Monte Carlo simulations.
The latter have been made with a parameterizable model
of the CORDIC-DDC considering all quantization effects.
105 vector rotations with randomly generated rotation an-
glesf(k) (uniformly distributed in the interval[-p,p]) were
performed in MATLAB for each set of parameters(m, b).
The worst result for each set(m, b) has been taken as the
“simulated worst case error” (in contrast to the analytically
predicted worst case error of Eq. (13)). As the curves in Fig-
ure 5 suggest, Eq. (13) tends to overestimate the worst case
quantization error. This means that the analytically predicted
minimum SNR is lower than the simulated one. Neverthe-
less, although a bit pessimistic, the theoretically derived er-
ror bound can be used for dimensioning a CORDIC-DDC.
For a given minimum SNR and a given number of iterations,
the difference between the theoretically calculated minimum
number of fractionally binary digitsb and that found by sim-
ulation is only about one.

14 15 16 17 18 19 20
50

55

60

65

70

75

80

85

bnumber of fractional binary digits

m
in

im
um

 S
N

R
 in

 d
B

worst case error estimation

Monte Carlo simulation

(m ... number of CORDIC iterations)

m = 14

m = 15

m = 16

Figure 5: Minimum SNR predicted and simulated for a
CORDIC-DDC withm= n+ 1 iterations, different numbers
of fractional binary digitsb, andideal ADC

Beside the overall quantization error power its spectral dis-
tribution is an important property, i.e., the spectral purity. A
worst case assumption would be to concentrate the error in
one discete spur. This would give a bound for the spurious-
free dynamic range (SFDR) i.e., the ratio of the power of the
desired signal, and the power of the strongest spur.

Still, simulations have shown that the error is distributed
over frequency. Due to this distribution the strongest result-
ing spur is significantly lower than the overall error (worst
case error bound). Figure 6 shows the result of downcon-
verting a 20 MHz tone to DC (sample ratefS = 65 MSps).
The SFDR is approximately 98 dB in contrast to the worst
case estimation of 75 dB (analytically predicted) or 79 dB
(simulated) in Figure 5.

The spurs in Figure 6 are a result of cross-mixing the spurs



of the CORDIC with the input signal. If the input signal itself
contains spurs, even more spurs will appear at the output of
the CORDIC-DDC. In this case the spurs of the input signal
are mixed with the desired CORDIC frequency, and with all
the spurs of the CORDIC. Quantizing the input signal yields
such spurs. If their power is larger than the power of the
spurs of the CORDIC the SFDR is mainly determined by the
quantization of the input signal rather than the quantization
effects within the CORDIC-DDC. This is shown in Figure 7
where a 12 bit input signal is fed to the CORDIC. The SFDR
is decreased to approximately 70 dB compared to Figure 6.

It should be noted that quantized harmonic signals produce
an error spectrum which is much worse conditioned that that
of typical signals e.g., in communication applications.

−30 −20 −10 0 10 20 30
−160

−140

−120

−100

−80

−60

−40

−20

0

freqency in MHz

po
w

er
 s

pe
ct

ra
l d

en
si

ty
 in

 d
B

Figure 6: Power spectral density of the complex DDC out-
put signalI (k) + ¸Q(k) after down conversion of a 20 MHz
harmonic tone using a CORDIC-DDC with 16 iterations, 18
fractional binary digits, andideal ADC

6 CONCLUSIONS

In this paper a CORDIC-based method for digital down con-
version was proposed which overcomes the drawback of the
common DDC of requiring a very large ROM table to achieve
high resolution. Therefore, it helps to save chip area, power
consumption, and costs. Since this CORDIC-DDC can eas-
ily be implemented on a pipelined architecture, it is suitable
for high speed applications as required for the task of digital
down-conversion in software radio terminals. The CORDIC-
DDC can realize any oscillator frequency by simply feeding
it with the appropriate saw-tooth input signal. No coefficients
must be changed. Thus, it empowers the software radio con-
cept.

An analytically derived worst case quantization error
bound was presented which allows an efficient design of
CORDIC-based DDC.
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Figure 7: Power spectral density of the complex DDC out-
put signalI (k) + ¸Q(k) after down conversion of a 20 MHz
harmonic tone using a CORDIC-DDC with 16 iterations, 18
fractional binary digits, and12 bit ADC
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