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ABSTRACT

A simple approach for interrogating the
residual sequence of Kalman filter is
presented in this article. It has been found
that the variance parameter of an input noise
of radar can be successfully estimated by
using a recursive formula. After employing
some simulation examples, the suggested
formula shows acceptable results and thus
can be practically adopted to produce the
required statistics.

1 INTRODUCTION

Target trackers, whether they are passive or
active, are examples of electronic
instrumentation setups that are usually
impaired by some sort of noise. The noise is
expected in times when the tracker is
practically operated. Generally, the most
common type of this noise is the White
Gaussian that has different means and
variances, N(77,0). The style of this

process depends on the target behavior and
the surrounding environment. The target
dynamic behavior can be estimated for each
track whereas no perfect knowledge is a
priori assumed. While, on the other hand,
the radar observation errors should be
calibrated and tolerated to the minimum
acceptable ranges. To calculate the
observation statistics for each new radar
setup, some kind of assessment policy
should be examined and approved in
advance. Then, accurate values for these
attributes can be referenced in the manual of
that radar. In some other circumstances,
charts might be useful to describe these
inclinations under different environmental
conditions, such as fogy, raining, or dusty
flying scenarios.

2 PROBLEM ANALYSIS

Suppose that we have a scalar measurement
system (for range channel for instance)
defined by the following stochastic model:

k) = x(k) +n(k)

for which the following residual sequence
formula can be derived [1-4]:

y(k+1)= (k) —x(k+1/k)

It might be convincing to assume X as a
deterministic constant value added to the
input noise profile, which is acquired at
time slots much more smaller than the time
periods over which the target aims to
change its attitude. Thus, X could be

replaced by the state estimate X that is
carried out by the tracking processor.
Accordingly, the input is justified to
approximate same statistical characteristics
of the residual sequence. Sequential
covariance and mean estimators have been
suggested in the literature [2,and 3]. Using
moving windows over the state and
measurement error sequences of Kalman
filter propagation formulas basically
approaches the proposed algorithms.
However, those methods yield
complications and they are computationally
demanding. On-line feedback correction
terms are always required by their
recurrence formulas. Conceptually, when
the target behaves smoothly, reliable
assessments of the systems’ errors should be
worked out to retain the filter performance
acceptable.
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3 SIMULATION RESULTS AND
DISCUSSIONS

Using the computer, a simple deterministic
trajectory of a 90°-curvature movement has
been simulated. This trajectory assumes
neither fluctuations nor sudden changes in
the target-flying course and for the
parameters as depicted in Fig.1. Letting the
filter reaches its steady-state status should
initialize the mean and variance sequential
estimates of the innovation process. A
sliding window of 100-samples length is
implemented over the entire trajectory to

4

accomplish  the  statistical  estimates
according to the following recursive
algorithms:

m,(j)=m, (j =D+ 7())
0, ()=0,"(-D+1 () ~m, ()}

where m(.), of), and y) are the mean,
standard deviation, and residual sequence,

respectively.
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Fig.1 A 90°-curvature simulated trajectory.

While two scenarios with input noise
variances and means as illustrated in Fig.2
and Fig.3, the anticipated results show a
promising agreement to the real statistical
values. On the other hand, inferior
performance is gained when the actual
means take on different values other than
zero. Surprisingly, this confirms to the
Kalman filtering interpretation for which
two White Gaussian processes of zero mean
are entailed to conceive the performance
optimality. The estimated values are
evidently believed stationary along the
period of maintaining the measurement
experiment since the same device is
employed and external disturbances are not

imposed. Thus, variances are ensured to
experience some certain values; however,
for different weather conditions the
experiment should be tolerated. These
figures should be documented and hence
handed to the customer by the operational
data sheets of the purchased equipment.
Clear statements of the weather conditions
should also be indicated. Thus, for civilian
applications as a special case, winter
characteristics of the tracking systems are
highly different than those for summer
season. While for a system under harsh
maneuvers, the tracker should be supplied
with the proper adaptation processor to
circumvent the probability of loosing the



target trace. Achieving more evaluation on
the statistical target maneuver intensity can

significantly enhance the tracker
performance against inconveniences of
modeling errors and  approximations

resulted as elusive changes occurred in the
target attitude. In such hindrances, the

might be investigated as proposed in the
literature [4]. As for comparison with other
methods, the main advantage of this method
lies in its simplicity and modest
computation. Other methods are well pretty
computational demanding and usually their
algorithms take longer times as for

residual posses non-zero valued means and convergence.
consequently a bias removal technique
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Fig.2 Estimated input-noise deviations for target attributes: Velocity=100m/s,
Accelerati0n=1m/s2, Acquisition time=10ms, Range error=1m, Maneuver error=1m/s’.
Actual range error deviation= 100m.
---------- Actual range error deviation=500m.
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Fig.3 Estimated input-noise averages for the same target attributes.
Actual range error mean= 0m.
------- Actual range error mean= 100m.
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