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ABSTRACT

When an X-ray image is taken, interactions between
tissues of the patient and X-rays cause scattered radiation.
The detection of the scattered radiation causes degradation
of the image quality. Very common technique for reducing
scatter is the antiscatter grid. The grid is effective, but it
can not remove all scattering. Another drawback of the
grid is that the dose level must be increased, because of the
attenuation caused by the grid. Larger the dose level is,
larger the health risk became for the patient. Imaging
device could be simplified and the dose level decreased if
effects of the scattering could be reduced using
computational image processing methods. This paper
addresses the problem of the scatter compensation from the
digital X-ray images. Our algorithm is based on maximum
likelihood expectation maximization (MLEM) algorithm
derived in [1]. Modified version of this algorithm is
presented in this paper. MLEM algorithm increases noise.
Because of this SUSAN filter [13] was used after MLEM.
Our algorithm reduced scatter to 21% from its original
value in the skull image. Also contrast and signal to noise
ratio (SNR) were improved.

1 INTRODUCTION

Contrast loss caused by scattering may be as high as 90%
in the mediastinum region [1] and for example, a 12:1 grid
at 120 kV reduces mediastinal scatter from 93% to 62%
[2]. Computational methods bring new possibilities to do
scatter compensation more accurately. There are some
research efforts dedicated to the scatter reduction,
estimation and measurement [1-12]. Promising results have
been given when using so called Bayesian Image
Estimation (BIE) method [12]. It has been developed for
the digital chest radiographs. It is based on MLEM
algorithm [1].

Well known theory [2] says that total exposure is sum
of the primary and the scattered radiation. The primary
radiation forms important information of the inner
structures of the object. The scattering radiation degrades
primary information and therefore must be removed. When
the scattering radiation is removed using computational
methods, two main solution types are used. Method can be
based on measurement points of the scatter. Using these
points scatter field is interpolated to whole image area and
subtracted from total exposure [2,6]. Other method is

based on the model of the scatter [1,3-10,12]. Using the
theory and the measurements, model is created for the
scatter and using it the primary radiation can be
determined.

MLEM algorithm [1,2-5,7,12] belongs to model
oriented class. Authors of MLEM algorithm have used
linear invariant scatter model. It can produce quite good
results for thorax images, because the scatter field is
relatively smooth in the case of the thorax. But there are
some problems if we want to use same method for any
kind of objects. The scatter field can be so nonuniform that
the linear scatter estimation does not give satisfying
results. This is the situation when imaging for example
skull. In this paper modified version of MLEM algorithm
is presented. It is known that MLEM algorithms decrease
SNR. Because of this image must be filtered after scatter
compensation. Noise filtering was done using so called
smallest univalue segment assimilating nucleus (SUSAN)
algorithm [13].

Image acquisition system used in this research is fully
digital. Information carried by X-rays is converted to
visible light using fluorescent screen. Intensities of this
light are read using CCD-array.  Principle of the system is
shown in Figure 1. CCD-array consists of 2000×2000
semiconductor elements. Resolution of the one element is
0.2×0.2mm. Image data is quantized to 16 bit. Data coming
straight from the CCD-array was used rather than data,
which is converted to gray scale values. It is easier to
perform calculations for this data because values given by
CCD-array are linearly dependent on X-ray exposures.

Figure 1. Principle of the digital X-ray imaging system.
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2 SCATTER MEASUREMENTS

Scatter was measured using small lead beam stops
embedded into polystyrene plate. These beam stops were
put into 16×16 matrix, which covered whole image area.
Size of one beam stop was 3mm in diameter and 6mm in
height. X-rays going straight can not be detected behind
the beam-stops. Only the scattered radiation is detected in
these points. If film is used when taking X-ray images, so
called Posterior Beam Stop (PBS) method can be used
[2,9-11]. In PBS method two separate images are taken at
the same time: the conventional image and the beam stop
image. Using scatter fractions measured from the beam
stop image, scatter values in the conventional image can be
calculated in the same points. When using fully digital
system, two separate images had to be taken: first image,
which is a conventional X-ray image taken without the grid
and second image, which is taken so that there is the beam-
stop matrix between the object and the fluorescent screen.
An object to be imaged can not move between these two
images because pixels in these images have to be in same
places in respect to the object.

Using these two images convolution mask, which
produces scatter levels for each pixel depending of its
neighbors inside the mask, can be determined. This was
done using same method than was used in [10]. Two
dimensional radially symmetric exponential scatter kernel
was used. Because output of the CCD-array is linearly
depended on exposure values, output values could be used
without any conversion. Three images were used when the
convolution mask was determined: skull, hip and thorax
images. We determined only one kernel for all of these
images. This kernel produced following root mean square
errors (RMSE) between measured and convoluted values:
skull 24.43%, hip 51.0776% and thorax 29.47%. If
convolution mask is determined individually for each of
imaged objects, following results are achieved: skull
24.43%, hip 13.93% and thorax 8.33%. From these results
we can see that linear method fits quite well for the scatter
estimation in the case of the thorax, but especially skull
produces scatter that is difficult to estimate with linear
system. In this work we designed the mask, which was
determined using all of these images.

3 MLEM ALGORITHM

Areas that cause fast changes to the scatter field, for
example boundary area of the skull, are saturated if same
MLEM algorithm which has been derived in [1] is used.
Linear scatter estimation can not produce satisfactory
results. If current estimated scatter is too large with respect
to the current estimate of the primary exposure, it must be
modified. From the estimated scatter to the estimated
primary exposure ratio we get
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where superscript n denotes nth iteration, subscript k
denotes kth pixel, p denotes current estimated primary

exposure and s denotes current estimated scatter. Scatter
values can be modified by determining some function g
which makes coefficient f smaller in the areas where it is
too large as follows:

g

s

g

f
ps

n
kn

k
n
kNEW =⋅=                                                      (2)

Function g was chosen to be following:
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where parameters a1, a2, a3 and a4 are used to set values of
g so that better image quality is achieved. These values
were searched manually: filtering the image and adjusting
the parameters until saturation decreased.

Original MLEM algorithm was
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where T denotes measured total exposure, h is convolution
mask, hki denotes mask coefficient that tells how much
scattering occurs from pixel i to pixel k and N is total
amount of pixels in image. Sum in the denominator is
estimated scatter in pixel k on the nth iteration. Now the
algorithm becomes following:
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Function g is only one alternative and it can be any such
function that reduces the level of the estimated scatter in
the desired areas. For a’s in g following values were found
to be good in this case: a1=1.85, a2=0.085, a3=0.015 and
a4=-1.

4 NOISE FILTERING

MLEM algorithm increases SNR [1]. Therefore good noise
compensation algorithm is very useful. Noise filtering
component is built in to BIE algorithm. In this work
MLEM part was separated from BIE and SUSAN noise
filtering method was experimented instead of Bayesian
approach. SUSAN algorithm is as follows.
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where Y is filtered image, I is image to be filtered, r is
distance between filtered pixel and its neighbor inside



determined window, σ controls the scale of the spatial
smoothing and t is so called brightness threshold.  This
equation is applied if the denominator is not zero.
Otherwise median is taken from the eight neighbors of the
filtered pixel. It must be noticed that sums and median
taken over the local neighborhood do not include the
filtered pixel itself. If pixel value is near the value of the
filtered pixel, it affects much more to the result than if
neighbor’s value is far from the center value. Because of
this property SUSAN algorithm has tendency to preserve
significant structures. SUSAN algorithm is performed to
the image after the last iteration of the algorithm (5). In
this research values  σ=0.8 and t=700 were noticed to give
good results and window size was 3×3.

5 RESULTS

Signal, noise, SNR and Scatter Removal Accuracy (SRA)
were measured. Measurements were done using same
methods than in [7]. All three objects, which were imaged,
were human type phantoms. Signal, noise and SNR curves
(Fig.2-4) were drawn before SUSAN filtering. Curves
were drawn for four different places in the image. It can be
noticed from figures 1-4 that 10 iterations are enough for
MLEM algorithm to converge. There is about 21% left of
the scatter in the skull image (Fig.1). This value for the
thorax and hip is over 40% for both of them. But if
convolution masks which are determined individually for
each object type are used, there is about 15% left of the
scatter. It can be noticed that these values are not constant
for whole image. When SUSAN filtering was done, noise
and SNR values were from -7.7% to -28.1% and from
3.6% to 7.8% respectively. Signal values did not changed.
Hence SUSAN seems to be quite good noise removal
method. Filtered images are shown in figures 5-7.

6 CONCLUSION

The scatter is nonlinear in nature. When imaging thorax
scatter estimation can be accurate enough if it is done
using some linear estimation method. If estimation must be
done for any object of the human body, linear methods for
scatter estimation are not accurate enough. Therefore
adaptive methods for scatter estimation are needed. We
will continue our research in this area.

Another way to do scatter compensation is based on
measurements. Scatter is measured from each taken image
and using these measurements scatter field is formed and
subtracted from total exposure. When using fully digital
system, PBS type of methods can not be used. So two
separate images must be taken to measure the scattering.
This increases the dose level for the patient. However
measuring method should not increase health risk for the
patient and it should not destroy any information from an
image.
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Figure 1. Scatter removal accuracy for skull.



Figure 2. Signal / contrast values for each iteration for
skull. *)

Figure 3. Noise values for each iteration for skull. *)

Figure 4. SNR values for each iteration for skull. *)

*) Four different curves were taken from different places in
the skull image.

Figure 5. Original skull image.

Figure 6. Image filtered using original MLEM

Figure 7. Image filtered using modified MLEM algorithm
and SUSAN filter.


