THE POWER SPECTRUM OF A GENERALIZATION OF FULL-RESPONSE CPM

Jeffrey O. Coleman

jeffc@alum.mit.edu
Naval Research Laboratory
Radar Division
Washington DC

ABSTRACT
The power spectrum is derived for a generalization of full-response continuous phase modulation (CPM). The derivation is simpler than those previously published for CPM, the result is cleaner, and the more-general signal class may enable improvement on CPM at negligible cost.

1 INTRODUCTION

Data signal \(\sum_k q_k(t - kT) \) has a simply expressed power spectrum when uncorrelated data are used to choose “waveform symbols” \(\{ q_k(t) \} \) from a finite waveform alphabet. This result is well known for the common case of memoryless linear modulation, \(q_k(t) = a_k p(t) \) with uncorrelated symbols \(\{ a_k \} \) drawn from a finite alphabet. First presented below, in the preliminaries, is the simple extension to a case involving memory: an arbitrary correlation-stationary waveform sequence drawn from a finite-dimensional waveform alphabet. For either form, the signal is constructed by shifting consecutive waveform symbols to place them sequentially in time. Figure 1 shows such a symbol with two time-axis “attachment points.” In effect, the construction places the first attachment point of a given symbol on the second attachment point of the previous symbol, continues the process symbol by symbol, and then takes the sum.

This attachment idea can now be extended in an interesting way for the case of interest. Suppose an arbitrary complex waveform is cut into segments of duration \(T \) as in fig. 2 (left). Each segment can be shifted to a standard time, rotated in the complex plane until the end-point angles are symmetric about the real axis, and amplitude scaled until the end points have reciprocal magnitudes. Each transformed segment trajectory takes the form shown in fig. 2 (right). If this decomposition is reversed with segments restricted to a finite waveform alphabet, a generalization of the fig. 1 construction results. The attachment points remain temporally separated by \(T \) but now also have reciprocally related complex amplitudes. To place one attachment point over another, the second waveform must be both time-shifted and scaled in complex amplitude.

The next section develops the power spectrum of such a signal when waveform symbols (segments in the above) are chosen in i.i.d. fashion from a finite waveform alphabet. The derivation does not actually require waveform segments to be of finite length nor to go through their attachment points. So the commonly known special case of full-response continuous phase modulation (CPM), whose defining characteristics are listed in Table 1, is actually rather restrictive. Indeed, of these characteristics, only finite support is required by the typical implementation structure used to realize a coherent CPM system. This suggests one might optimize signal characteristics within the larger class.

CPM’s constant envelope is important in radar and communication systems requiring maximally efficient power amplification in the transmitter. A preliminary, CPM-specific version of the present derivation was presented in [1]. That one and this one both are more elegant and less restrictive than the most-similar previous result [2], which was limited to integer values of the product \(Mh \) (see Table 1). (This is a severe restriction.)
Any combination of discrete- or continuous-time

The Hermitian (conjugate) transpose is denoted by \cdot^H. Indeed, Fourier transformation yields

eralized: An LTI filter operating on a random process scales

no connection was mentioned to the familiar fact that it gen-

vector and matrix dimen-

trix

mixed), as is scalar or vector

Definition. Function $(w \ast v)$, a convolution of discrete-time vector signal $v(n)$ with continuous-time matrix system-response kernel $w(t)$, is defined by

$$
(w \ast v)(t) \overset{\Delta}{=} T \sum_k w(t-kT)v(k)
$$

$$(v \ast w)(t) \overset{\Delta}{=} T \sum_k v(k)w(t-kT).$$

The usual properties (e.g. associativity) hold by analogy to

Definition. The adjoint M' of (possibly matrix- or vector-valued) function or random process M is defined by $M'(t) = M^H(-t)$ or $M'(n) = M^H(-n)$.

The Hermitian (conjugate) transpose is denoted by $(\cdot)^H$. (If $h(n)$ has z transform $H(z)$, then the z transform of $h'(n)$ is the paraconjugate of $H(z)$ from filter-bank theory.) The appendix develops related second-order statistics leading to:

Proposition. For random process v and impulse response w, convolution $u = w \ast v$ has autocorrelation $R_u = w \ast R_v \ast w^\prime$.

Any combination of discrete- or continuous-time w and v is allowed (the convolution may be continuous, discrete, or mixed), as is scalar or vector v and scalar, vector, or matrix w. When the convolution is mixed, cyclostationarity is averaged out. (See the Appendix.) Vector and matrix dimensions must be compatible. The autocorrelations are scalar- or matrix-valued according to the dimensions of w and v.

In 1974 Prabhu and Rowe [3] used a mixed-convolution version to derive the spectra of communication signals, but no connection was mentioned to the familiar fact that it generalized: An LTI filter operating on a random process scales its power spectrum by the squared magnitude of the transfer function. Indeed, Fourier transformation yields

Proposition. The convolution $u(t) = (w \ast v)(t)$ of process $v(n)$ and response $w(t)$ has spectral density (matrix)

$$S_u(f) = W(f)TS_v(Tf)W^H(f).$$

Table 1: Modulation index h and frequency pulse $g(t)$ determine the M-ary full-response CPM waveform alphabet.

2 PRELIMINARIES

Begin with a mixed continuous- and discrete-time matrix-vector convolution that generalizes on PAM signaling. Nota-

 Definitions.

Function $(w \ast v)$, a convolution of discrete-time vector signal $v(n)$ with continuous-time matrix system-response kernel $w(t)$, is defined by

$$
(w \ast v)(t) \overset{\Delta}{=} T \sum_k w(t-kT)v(k)
$$

$$(v \ast w)(t) \overset{\Delta}{=} T \sum_k v(k)w(t-kT).$$

The usual properties (e.g. associativity) hold by analogy to

Definition. The adjoint M' of (possibly matrix- or vector-valued) function or random process M is defined by $M'(t) = M^H(-t)$ or $M'(n) = M^H(-n)$.

The Hermitian (conjugate) transpose is denoted by $(\cdot)^H$. (If $h(n)$ has z transform $H(z)$, then the z transform of $h'(n)$ is the paraconjugate of $H(z)$ from filter-bank theory.) The appendix develops related second-order statistics leading to:

Proposition. For random process v and impulse response w, convolution $u = w \ast v$ has autocorrelation $R_u = w \ast R_v \ast w^\prime$.

Any combination of discrete- or continuous-time w and v is allowed (the convolution may be continuous, discrete, or mixed), as is scalar or vector v and scalar, vector, or matrix w. When the convolution is mixed, cyclostationarity is averaged out. (See the Appendix.) Vector and matrix dimensions must be compatible. The autocorrelations are scalar- or matrix-valued according to the dimensions of w and v.

In 1974 Prabhu and Rowe [3] used a mixed-convolution version to derive the spectra of communication signals, but no connection was mentioned to the familiar fact that it generalized: An LTI filter operating on a random process scales its power spectrum by the squared magnitude of the transfer function. Indeed, Fourier transformation yields

Proposition. The convolution $u(t) = (w \ast v)(t)$ of process $v(n)$ and response $w(t)$ has spectral density (matrix)

$$S_u(f) = W(f)TS_v(Tf)W^H(f).$$

The change of variable from normalized to unnormalized frequency in $S_v(\cdot)$ gives this mixed-convolution version a slightly different look from the others. The scalar version applies to the introduction’s $T \sum_k a_k q(t-kT)$ form. The extension to $\sum_k q_k(t-kT)$ with $q_k(t)$ drawn from a finite-dimensional space is covered by the vector version of the proposition with $q_k(t) = Tw(t)v_k$, with row vector $Tw(t)$ containing the waveform basis and the products with coefficient vectors $\{v_k\}$ forming the symbol waveforms.

3 THE DERIVATION

The derivation now specializes to attachment-point sequenc-

ing in the complex plane. Figure 3 specializes fig. 2 (right) to construction of waveform segments and associated attachment points from row vectors $Tq'(t)$ and $\Delta^T v_k$ of basis functions and (second) attachment points respectively. Real i.i.d. coefficient vectors v_k are drawn from an arbitrary finite or infinite alphabet and serve as transmitted data:

$$s(t) = \sum_k Tq'(t-kT)v_k\alpha_k. \tag{1}$$

Figure 3: Form each segment as a linear combination of basis vectors.

The constructed sequence $\{\alpha_k\}$ connects attachment points in the complex plane. Signal (1) is the generalized form for which this paper derives the power spectrum. (Due to conference-paper space limitations, precise connection to the CPM special case is left to the reader.) Using $(wv)(k) \overset{\Delta}{=} v_k\alpha_k$, signal (1) can be written $s = q^\prime \ast (v_\alpha)$, so its power spectrum is

$$S_s(f) = Q^H(f)TS_{(v_\alpha)}(Tf)Q(f). \tag{2}$$

Deriving matrix $S_{(v_\alpha)}(Tf)$ or $R_{(v_\alpha)}(n)$ is the challenge.

The key is the attachment-point placement recursion. Suppose the scaling of segment $k-1$ has mapped point “1” in fig. 3 to α_{k-1}. The second segment $k-1$ attachment point
is then at \(\alpha_k = (\Delta T_v k_{-1}) \), and the segment \(k \) “I” must map to \(\alpha_k = (\Delta T_v k_{-1}) \), yielding

\[
\alpha_k = v_k^T \Delta \Delta^T v_{k-1} \alpha_{k-1}.
\]

For the \(n \neq 0 \) case, \(R_{(\nu a)}(n) = E[v_k \alpha_k \alpha_{k-n}^* v_{k-n}^T] \) or

\[
R_{(\nu a)}(n) = E\left[v_k \frac{\alpha_k}{\alpha_{k-n}^*} \alpha_{k-n} | v_{k-n}^T \right].
\]

Using the recursion relation \(n \) times to obtain the ratio,

\[
R_{(\nu a)}(n) = E\left[\prod_{m=0}^{n-1} v_{k-m} v_{k-m}^T \Delta \Delta^T \right] v_{k-n} v_{k-n}^T | \alpha_{k-n} |^2
\]

Conditioned on \(| \alpha_{k-n} |^2 \), the products \(v_{k-m} v_{k-m}^T \) are independent for \(m \leq n \) with only the \(m = n \) product actually dependent on \(| \alpha_{k-n} |^2 \). So with \(P \Delta^T = E[v_k v_{k-n}^T] \),

\[
R_{(\nu a)}(n) = (\Delta \Delta^T)^{-n} E[\alpha_{k-n} | E[v_{k-n} v_{k-n}^T] | \alpha_{k-n} |^2]
\]

The spectrum concept requires a wide-sense stationary signal, implying for independent data \(\{ v_k \} \) that \(| \alpha_k |^2 \) is constant and therefore that the inner expectation’s conditioning can be removed.

\[
R_{(\nu a)}(n) = (\Delta \Delta^T)^{-n} P | \alpha_k |^2
\]

Attachment points off the unit circle clearly serve no immediate purpose, but their inclusion may aid future extension. Using \(R_{(\nu a)}(0) = E[v_k \alpha_k \alpha_{-1}^* v_{k}^T] = P | \alpha_k |^2 \) then, along with the automatic \(R_{(\nu a)} = R_{(\nu a)}^T \), symmetry,

\[
\frac{1}{| \alpha_k |^2} R_{(\nu a)}(n) = \text{H.S.} \left\{ P \delta_n + 2P \Delta \Delta^T \gamma^{n-11_{1, \infty}}(n) \right\}
\]

for all \(n \), where \(\gamma \Delta = \Delta \Delta^T P \Delta \) and where indicator function \(1_{1, \infty}(n) \) is unity when \(n \in [1, \infty) \) and zero otherwise. The Hermitian-symmetric component of a matrix sequence is denoted H.S. \(\{ A_n \} \Delta = \frac{1}{2} \{ A_n + A_n^H \} \).

Taking the Fourier transform of \(v_n \Delta \gamma^{n-11_{1, \infty}}(n) \) with care (to get a key special case right), let \(h_n = \delta_{n+1} - \gamma \delta_n \), so that \(v_n * h_n = \delta_n \) and \(V(\nu) H(\nu) = 1 \). When \(| \gamma | < 1 \), \(H(\nu) \neq 0 \) for all \(\nu \), so \(V(\nu) = \frac{1}{H(\nu)} = \frac{1}{e^{j2\pi \nu} - \gamma} \). If \(\gamma = 1 \), however, \(\gamma = e^{j2\nu} \) for some frequency \(\nu \) for which \(H(\nu) = 0 \), and any additional component \(\beta \sum_k \delta(\nu - \nu - k) \) must be discovered some other way:

\[
\beta = \lim_{N \rightarrow \infty} 2N \frac{1}{N} \sum_{n=-N}^{N} v_n e^{-j2\pi \nu n} = e^{j2\pi \nu}.
\]

So,

\[
V(\nu) = \frac{1}{e^{j2\pi \nu} - \gamma} + \begin{cases}
\frac{1}{2} e^{j2\pi \nu} \sum_k \delta(\nu - \nu - k), & \text{if } \gamma = e^{j2\pi \nu}.
\end{cases}
\]

The Fourier transform of \(P \Delta^T \) can now be written \(S_{(\nu a)}(\nu) = | \alpha_k |^2 E \{ P + 2P \Delta \Delta^T P \nu V(\nu) \} \), and \(| \alpha_k |^2 \) then yields the power spectrum of signal \(s(t) \) in \(\{ \nu \} \). Scale key quantities by a symmetric square root of real covariance matrix \(P \)

\[
\frac{\Psi \Delta}{G(f)} = P^{1/2} \Delta
\]

Now \(\gamma = \Psi^T \Psi \), so if \(| \Psi^T \Psi | < 1 \),

\[
S_s(f) = \frac{G(f) H(f) R e \{ I + \frac{2}{e^{j2\pi T} - \Psi^T \Psi \} \}}{G(f)}.
\]

If \(\Psi^T \Psi = e^{j2\nu} \), however, this spectral-line term must be added on the right:

\[
G(f) R e \left\{ \Psi^T e^{-j2\nu} \sum_k \delta(fT - \nu - k) \right\} G(f).
\]

The usual CPM signal that would be transmitted on a channel has \(| \Psi^T \Psi | < 1 \) and has the continuous spectral form given above. The additional spectral-line term typically arises when a conventional CPM signal is passed through a bandpass nonlinearity, as might be used in certain types of synchronization systems for carrier and symbol timing.

4 SUMMARY

This paper’s complex data signal comprised complex waveform symbols chosen independently with arbitrary probabilities from a finite-dimensional function space and sequentially attached through time shifting and complex scaling of Markov character. One example is full-response CPM, elsewhere represented with Markov encoding of the signaling-interval endpoints. Encoding geometric mean of the endpoints instead is fundamentally responsible for this simpler result, the first in a clean vector/matrix form. The final spectral expression is a simple function of two vectors, one the basis for the waveform-symbol space and one the basis for corresponding Markov changes in complex amplitude.

APPENDIX: MATHEMATICAL FOUNDATIONS

In this appendix, \(u(t) \) and \(v(n) \), whether or not subscripted, are continuous-time and discrete-time random processes respectively, the latter with \(n \) implicitly referring to time \(nT \). These mixed continuous- and discrete-time results parallel and sometimes depend on familiar results in both continuous time and discrete time. As usual, double-subscripted crosscorrelations become single-subscripted autocorrelations when the two processes are one. The simple proofs of the

If symmetric-matrix sequence \(A_n \) Fourier transforms to \(A(f) \), the transform of H.S. \(\{ A_n \} \) is \(\frac{1}{2} \{ A(f) + A(f)^H \} = R e \{ A(f) \} \).
first two propositions are omitted. Fourier-pair notations used:

\[\text{auto/cross} \quad /\text{cross} \quad \text{correlation} \quad \text{spectral density} \]

\[R_{\text{something}}(\tau) \leftrightarrow S_{\text{something}}(f) \]

\[R_{\text{something}}(n) \leftrightarrow S_{\text{something}}(\nu) \]

Proposition. For any convolution type, \((x \ast y)' = y' \ast x'\).

Proposition. Let \(u(t) \leftrightarrow U(f)\) and \(v(n) \leftrightarrow V(\nu)\) be Fourier transform pairs in continuous and discrete time (with normalized frequency \(\nu\)). Then

\[u'(t) \leftrightarrow U^H(f) \]

\[v'(n) \leftrightarrow V^H(\nu) \]

\[(u \ast v)(t) \leftrightarrow U(f) T V(fT). \]

Definition. Crosscorrelation of a continuous-time process and a discrete-time process is defined by

\[R_{uv}(\tau) \triangleq E[u(\tau - nT)v'(n)] \]

\[R_{vu}(\tau) \triangleq E[v(n)u'(\tau - nT)]. \]

If these are independent of \(n\), \(u(t)\) and \(v(n)\) are said to be crosscorrelation stationary.

Proposition. Crosscorrelation stationary \(u(t)\) and \(v(n)\) imply conjugate symmetry: \(R_{uv}^*(\tau) = R_{vu}(\tau)\).

Proof: Because \(R_{uv}^*(\tau) = (E[u(-\tau - nT)v'(n)])^H = E[v(-n)u^H(-\tau - nT)] = E[v(n)u'(\tau - nT)]. \]

Proposition. If \(u(t) = (w \ast v_1)(t)\) with both \(v_1(n)\) and \(v_2(n)\) crosscorrelation stationary, then \(R_{uv_2}(\tau) = (w \ast R_{v_1,v_2})(\tau)\) and \(R_{v_2,u}(\tau) = (R_{v_2,v_1} \ast w')(\tau)\).

Proof:

\[R_{uv_2}(\tau) = T \sum_k w(\tau - nT - kT) E[v_1(k)v'_2(n)]. \]

The second follows from the conjugate symmetry of autocorrelations, since \(R_{v_2,u}(\tau) = R_{uv_2}^*(\tau) = (w \ast R_{v_1,v_2})' = R_{v_2,v_1} \ast w' = R_{v_2,v_1} \ast w'. \]

Those definitions and results were completely parallel to the familiar ones, but these next few involve a minor, natural extension to average out the cyclostationarity.

Definition. Average-crosscorrelation function \(R_{u_1,u_2}(\tau)\) is defined by \(R_{u_1,u_2}(\tau) \triangleq E[u_1(t - \rho)u_2'(\tau - t + \rho)]\), where random variable \(\rho\) is uniformly distributed on any interval \(T\) of width \(T\), independently of all else, and provided that the processes are jointly (2nd-order) cyclostationary with period dividing \(T\).

It does not matter what interval \(T\) is chosen, because decomposition \(\rho = kT + r\) provides a one-to-one map \(\rho \mapsto r\) from \(T\) onto \([0, T]\) with \(dr/d\rho = 1\) almost everywhere. Consequently, the right side of definition

\[R_{u_1,u_2}(\tau) = \int_T E[u_1(t - \rho)u_2'(\tau - t + \rho) \mid \rho] \frac{d\rho}{T} \]

becomes

\[\int_{[0, T]} E[u_1(t - kT - r)u_2'(\tau - t + kT + r) \mid r] \frac{dr}{T}. \]

Cyclostationarity guarantees that the expectation is invariant to the shift by \(kT\), so this becomes \(R_{u_1,u_2}(\tau) = E[u_1(t - r)u_2'(\tau - t + r)]\), where independent random variable \(r\) is uniformly distributed on \([0, T]\). Because this holds no matter which interval \(I\) is chosen, this autocorrelation is well defined.

Proposition. When \(u_1\) and \(u_2\) are crosscorrelation stationary, the crosscorrelation function is conjugate symmetric, \(R_{u_1,u_2}(\tau) = R_{u_2,u_1}(\tau)\)

Proof: The argument is straightforward.

\[R_{u_1,u_2}(\tau)' = (E[u_1(t - \rho)u_2'(\tau - t + \rho)])^H = E[u_2(\tau + t - \rho)u_1^H(t - \rho)] = E[u_2(\tau - \eta)u_1(\tau - \eta)] = R_{u_2,u_1}(\tau), \]

since random variable \(\eta = \rho - \tau\) is uniformly distributed on an interval of width \(T\).

Proposition. If \(u_1(t) = (w_1 \ast v_1)(t)\), then \(R_{u_1,u_2}(\tau) = (w_1 \ast R_{v_1,u_2})(\tau)\) and \(R_{v_1,u_1}(\tau) = (R_{v_1,v_2} \ast w'_1)(\tau)\).

Proof: Suppose \(u_1(t) = (w_1 \ast v_1)(t)\). Then \(R_{u_1,u_2}(\tau)\) can be written using a conditional expectation as

\[\frac{1}{T} \int_T \sum_k w(t - \rho - kT)E[v_1(k)u_2'(\tau - t + \rho) \mid \rho] d\rho. \]

After a change of variable,

\[R_{u_1,u_2}(\tau) = \sum_k \int_{T + kT + r} E[v_1(k)u_2'(\gamma - kT)] d\gamma, \]

which once summed is the desired first result. The second follows from the conjugate symmetry of the crosscorrelations involved.

REFERENCES

