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ABSTRACT

Maximum-likelihood estimation and multicarrier modula-
tion techniques are effective methods to mitigate intersymbol
interference (ISI) in wireless and wireline communications,
but their complexity and performance are limited by the
channel length. Channel shortening equalization is an effi-
cient way to shorten the length of the ISI channel while keep-
ing most of the channel energy inside the shortened window.
In this paper, we propose an infinite impulse response (IIR)
filter for channel shortening and provide polynomial based
algorithms to compute the shortening filter. We also consid-
ered a very general framework allowing auto-regressive mov-
ing average (ARMA) input and noise processes together with
an ARMA channel model. An illustrative numerical example
shows the superior performance of our proposed scheme as
compared to existing techniques.

1. INTRODUCTION

Intersymbol interference (ISI) channels are one of the main
causes of performance loss in both wireless and wireline
communications. It is well known that maximum likelihood
(ML) estimation is the optimum method to mitigate the ef-
fect of ISI, but the complexity of the algorithm grows ex-
ponentially with the length of the channel, which makes it
unfeasible to implement except for very short channels, [3].
Similarly, for systems employing discrete multicarrier mod-
ulation (such as OFDM), a cyclic prefix of length propor-
tional to the channel length is needed between transmission
blocks to prevent inter-block interference, therefore reducing
the transmission rate, [5], [8].

Channel shortening is an efficient way to increase the per-
formance for both schemes. The basic idea is to equalize the
long channel into a much shorter target channel by compress-
ing the energy in the long channel into these few taps. In the
literature several algorithms can be found for channel short-
ening [3]-[5], [8]. The performance of finite length shorten-
ing filters is inadequate if the channel energy is spread over a
large number of taps and the channel model has zeros close
to the unit circle due the length of the shortening filter. In [4],
an infinite length method is proposed which finds the pole-
zero approximation of a very long FIR shortening filter.

In this paper, we propose a frequency domain approach
to design infinite impulse response (IIR) channel shorten-
ing filters under the criterion of minimum mean square er-
ror and based on polynomial methods, [1], [2]. We con-
sider a very general framework by allowing the channel input
and the noise to be auto-regressive moving average (ARMA)
processes, but various scenarios such as a finite impulse re-
sponse (FIR) channel with colored noise or white noise can

readily be obtained from our general solution by setting ap-
propriate transfer functions to unity. We will show that this
method outperforms FIR channel shortening filters of simi-
lar implementation complexity. In contrast to the approach in
[4], our method finds the exact IIR shortening filter directly.

Throughout this paper, we will denote the backward shift
operator by q−1, i.e. q−1x(k) = x(k−1). For any polyno-
mial with order nP, P

(
q−1

)
= p0 + p1q−1 + · · ·+ pnPq−nP,

the conjugate polynomial is defined as P∗ (q) = p∗0 + p∗1q +
· · ·+ p∗nPqnP, where (.)∗ denotes the scalar conjugate. A
polynomial is said to be stable if all of its roots are inside
the unit circle, causal if it is a function of only q−1, and sim-
ilarly anticausal if it is a function of only q.

Section 2 develops the motivation and framework for IIR
channel shortening filters. Section 3 provides the design of
the IIR channel shortening filter. In Section 4, we provide a
numerical example which verifies the superior performance
of our proposed method over its FIR counterpart. Finally,
conclusions are drawn in Section 5.

2. PROBLEM STATEMENT

Consider the structure given in Figure 1, where channel,
shortening filter and target impulse response (TIR) together
with the input and noise processes are depicted. The aim is
to equalize the IIR channel B(q−1)/A(q−1) to a limited or-
der (nb) FIR target impulse response, b

(
q−1

)
= b0 + · · ·+

bnbq−nb, by employing a stable and causal IIR channel short-
ening (CS) filter Q(q−1)/R(q−1) based upon the minimum
mean square error (MMSE) criterion. A frequency domain
approach is followed for the optimization.

Both the channel input s(k) and the noise n(k) are as-
sumed to be ARMA processes as respectively with the trans-
fer functions C(q−1)/D(q−1) and M(q−1)/N(q−1). The sta-
tionary processes d (k) and v(k) are assumed to be zero-mean
and white with variances λd and λv respectively. Except B,
which has an arbitrary but nonzero leading coefficient, all
polynomials are monic. The polynomials A, D, and N are
assumed also to be stable. The delay parameter m is adjusted
to maximize the performance. The polynomials Q and R
are coprime, otherwise the common terms cancel each other.
Consider the CS filter input (for simplicity the parentheses of
polynomials will be dropped where convenient)

y(k) =
B
A

C
D

d (k)+
M
N

v(k) . (1)

This signal can be written in the innovations form

y(k) =
β

ADN

√
ληη(k) (2)
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Figure 1: Channel shortening model employing an IIR short-
ening filter to approximate an IIR channel to a finite length
target impulse response. The channel input s(k) and the noise
n(k) are ARMA processes.

where η(k) is the innovation sequence (white with unity
variance), the scalar η is a gain term, and the polynomial
β(q−1) = 1 + β1q−1 + · · ·+ βnβq−nβ is the monic and stable
spectral factor of y(k). Equating the spectral densities of y(k)
from (1) and (2), we obtain

rββ∗
AA∗DD∗NN∗

=
BB∗CC∗
AA∗DD∗

+ρ
MM∗
NN∗

rββ∗ = BB∗CC∗NN∗+ρAA∗DD∗MM∗ (3)

where r = λη/λd and ρ = λv/λd . The degree of β is nβ =
max{nB+nC +nN,nA+nD+nM}.

3. IIR CHANNEL SHORTENING EQUALIZER

The signals z(k) and ẑ(k) can be written as

z(k) = q−mb
C
D

d (k)

ẑ(k) =
Q
R

(
B
A

C
D

d (k)+
M
N

v(k)
)

The error signal ε(k) is defined as the difference between
these signals

ε(k) = z(k)− ẑ(k)

=
[

q−mb− Q
R

B
A

]
C
D

d (k)− Q
R

M
N

v(k) (4)

Using the orthogonality principle of MSE estimation
which states that the error signal and filter input are orthog-
onal, we obtain (5) given at the top of the next page, where
Parseval’s formula is employed.

We conclude that to make this integral equal to zero, all
stable poles in the denominator must be cancelled by the nu-
merator (Cauchy’s integral theorem, [6]) (poles outside the
unit circle do not contribute to the integral since the integra-
tion contour is the unit circle)

z−mRbAB∗CC∗NN∗− rββ∗Q
zRADN

= L∗

where L∗ is an anticausal polynomial to satisfy the equality.
Rearranging we obtain

z−mRbAB∗CC∗NN∗ = rββ∗Q+ zRADNL∗ (6)

We observe that R is common to both the left-hand-side
(lhs) and the second term in the right-hand-side (rhs). Since
R and Q are coprime and the only stable factor of the first
term in the rhs is β, R must be equal to β. Similarly, since
N and A are common to both the lhs and the second term
in the rhs, they must be factors of Q, therefore Q = Q1AN.
Therefore the optimum shortening filter is found to be

Q
R

=
Q1AN

β
(7)

where Q1 is a function of b which will be calculated in the
next step. Substituting Q and R into (6) we get

z−mbB∗CC∗N∗ = rβ∗Q1 + zDL∗ (8)

rewriting
z−mbB∗CC∗N∗

rDβ∗
=

Q1

D
+

zL∗
rβ∗

(9)

the rhs is the causal-anticausal factorization of the lhs. Since
Q1 is purely causal and zL∗ is purely anticausal they are
independent, which means L∗ can be written in terms of
only b. It can easily be verified that the degrees of Q1 and
L∗ are respectively nQ1 = max{nb + nC + m,nD− 1} and
nL = max{nB + nC + nN−m,nβ}− 1. In fact, (8) is a dio-
phantine equation and several efficient methods exist to solve
this equation [1], [7].

The mean square error can be written as in (10)− (11)
which can be found at the top of the next page. On the sec-
ond line, we used the completing to the squares method after
substituting (4) into (10). A closer investigation of the first
bracket in (11) reveals that Q/R, when chosen as in (7), can-
cels the causal part of the second term in that bracket (which
is Q1/D in (9) ). This optimizes the MSE with respect to the
strictly causal and stable polynomials Q and R. Therefore,
for this choice of Q and R, we could write the MSE in (11)
as

J =
λd

2π j

∮

|z|=1

{
LL∗+ρbb∗AA∗CC∗MM∗

rββ∗

}
dz
z

(12)

The polynomials A, C and M are known, and β and L can be
determined using equations (3) and (8) respectively. The
only unknown b is chosen to minimize the MSE in (12).
To calculate the integral we can employ Cauchy’s integral
formula, [6], by first expanding the integrand using partial
fractions. We should note that after partial fractions expan-
sion, all of the numerators are constant with respect to z,
it suffices to add the numerators corresponding to non-zero
poles located in the unit circle (which are actually the roots
of β(q−1)) and the numerator of the 1/z fraction, therefore
there is no need to solve the integral explicitly. Upon sum-
mation of the numerators contributing to the integration, we
obtain a quadratic function of b

(
q−1

)
,

J = bHRb

where b =[b0 b1 · · · bnb]
T . The matrix R is posi-

tive definite, therefore the eigenvector corresponding to the
smallest eigenvalue is the coefficients of the optimum TIR in
polynomial, bopt(q−1). The optimum channel shortening fil-
ter can be obtained by first substituting bopt

(
q−1

)
back into

(9) to calculate Q1 which is then substituted into (7).
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E {ε(k)y∗ (k)}=
λd

2π j

∮

|z|=1

{
z−mRbAB∗CC∗NN∗− rββ∗Q

RAA∗DD∗NN∗

}
dz
z

= 0 (5)

J = E {ε(k)ε∗ (k)} (10)

=
λd

2π j

∮

|z|=1

{
r

[
Qβ

RADN
− z−mbB∗CC∗N∗

rDβ∗

][
Q∗β∗

R∗A∗D∗N∗
− zmb∗BCC∗N

rD∗β

]
+

ρbb∗AA∗CC∗MM∗
rββ∗

}
dz
z

(11)

The equivalent channel which is the convolution of the
channel and the shortening filter is

Ceq =
B
A

Q
R

=
Q1BN

β
. (13)

Remarks:
1. If the channel shortening is performed only with a nu-
merator polynomial, Q(q−1), it can be verified that this fil-
ter, Q ′ = Q1ANβ−1, would be of infinite length. The FIR
shortening filter is the truncation of this polynomial into a
finite length. Therefore, if the stronger taps of the impulse
response of the IIR channel are accumulated in a relatively
short window, the performance of FIR and IIR filters can be
very close. However, if the channel has many zeros close to
the unit circle which results in very long Q ′, the truncation
would yield performance loss as demonstrated in the next
section.
2. When we set the TIR to b = 1 the channel shortening fil-
ter reduces to the Wiener equalizer [1], [2]. This provides
complete equalization, but at the expense of degradation of
performance as compared to a full complexity ML detector.
In terms of complexity, the channel shortening filter, when
applied as a preprocessor, lies between a linear equalizer and
a ML detector. Channel shortening techniques also have po-
tential application in multicarrier modulation schemes to re-
duce the required prefix length, hence to increase the band-
width efficiency.

4. A NUMERICAL EXAMPLE

Consider a second order IIR channel with parameters B =
(1 − 0.95q−1 + 0.9025q−2) and A = (1 − 1.1314q−1 +
0.64q−2), which correspond to two zeros at 0.95e± jπ/3, and
two poles at 0.8e± jπ/3. The ARMA models for the in-
put and noise processes are chosen such that C = D = 1,
M = (1−0.3q−1), N = (1+0.7q−1), with λd = 1, λv = 0.05,
ρ = 0.05. Therefore the SNR at the shortening filter input is
calculated as 10 dB. It is desired to shorten the channel to
two taps (nb = 2). The optimum delay m = 0 is considered.
Therefore, the filter input is

y(k) =
1−0.95q−1 +0.9025q−2

1−1.1314q−1 +0.64q−2 d (k)+
1−0.3q−1

1+0.7q−1 v(k)

The spectral factor β of this signal and the scalar r in (3) are
found to be

β = 1−0.3334q−1 +0.3041q−2 +0.5412q−3

r = 1.1495

The degrees of polynomials Q1 and L are calculated as
nQ1 = 1, nL = 2. To manipulate the causal-anticausal factor-
ization (9), we write the equation (8) in matrix form




1.1495 0 0 0 0
−0.3831 1.1495 0 0 0
0.3496 −0.3831 1 0 0
0.6221 0.3496 0 1 0

0 0.6221 0 0 1







q1
q0
l∗0
l∗1
l∗2


 =




b1
b0−0.25b1

−0.25b0 +0.2375b1
0.2375b0 +0.6318b1

0.6318b0




where we obtain the polynomials Q1 and L∗ as

Q1 = (0.8699b0 +0.0724b1)+(0.8699b1)q−1 (14)

L∗ = (0.0833b0−0.0389b1)+(−0.0666b0

+0.0652b1)q+(0.0905b0−0.0451b1)q2

Substituting L∗ into (12) and performing partial fractions ex-
pansion, the MSE expression becomes

J = 0.1301b∗0b0−0.0724b∗0b1−0.0724b∗1b0+0.1241b∗1b1

= [b∗0 b∗1]
[

0.1301 −0.0724
−0.0724 0.1241

][
b0
b1

]

The minimum eigenvalue, which is also the MSE, is
5.4566× 10−2. The corresponding eigenvector, hence the
TIR, in polynomial form is

b(q−1) = 0.6922+0.7217q−1

Substituting b into (14), the polynomial Q1 is found to be

Q1(q−1) = 0.6545+0.6278q−1

Therefore the optimum shortening filter given in (15) at
the top of the next page is found by substituting Q1, β, A and
N into (7). The equivalent channel impulse response given in
(16) at the top of the next page is calculated by substituting
the polynomials Q1, B, N and β into (13).

Figure 2 depicts the impulse responses of the equalized
channel obtained using the IIR and the FIR methods together
with the original channel impulse response. The TIR win-
dow has been chosen as the first two taps, and the remaining
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Q
R

=
Q1AN

β
=

0.6545+0.3455q−1−0.3703q−2 +0.1978q−3 +0.2813q−4

1−0.3334q−1 +0.3041q−2 +0.5412q−3 (15)

Ceq =
Q1BN

β
=

0.6545+0.4642q−1−0.0015q−2 +0.5626q−3 +0.3966q−4

1−0.3334q−1 +0.3041q−2 +0.5412q−3 (16)

taps correspond to the interference terms.It can be seen that a
good compression is achieved with the IIR filter as compared
to the FIR filter for the same complexity.

We compare the performance of the proposed method to
that of an FIR channel shortening filter of length nQ + nR−
1 = 8 (which has the same complexity as the ARMA filter)
designed with the MMSE criterion as given in [5]. We con-
sider two types of performance measure. The first one is the
compression ratio which is defined as the ratio of the energy
inside the TIR window to that of the whole channel impulse
response window after equalization. This quantity for the
original channel is 67%. We obtained 85% compression ratio
with an FIR channel shortening filter, whereas our proposed
ARMA based channel shortening filter achieved 99.7% com-
pression. We also studied the performance based on the
shortening signal-to-interference plus noise ratio (SINR),
where the signal component is considered as the energy in-
side the TIR window and the interference component is con-
sidered as to the energy outside the window. The method
based on the FIR filter results in 6.5 dB SINR, whereas our
proposed method results in 12.4 dB SINR.

5. CONCLUSIONS

We proposed the design of a channel shortening filter based
upon an IIR structure using a polynomial approach. We con-
sidered a very general framework allowing the signal and
the noise to be ARMA processes and the channel to be an
ARMA model. Various simple scenarios such as an FIR
channel and white or colored noise can readily be obtained
from the proposed method. Using the simulation results,
we have demonstrated superior performance of our proposed
IIR based channel shortening filter as compared to its FIR
counterpart. Extreme compression ratio achieved by this
method encourages application of this technique in wireless
and wireline communications as a preprocessor at the re-
ceiver for reducing the complexity of a ML detector or for
reducing the cyclic prefix length in multicarrier modulation
schemes such as OFDM.
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