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ABSTRACT

This paper proposes a robust blind channel shortening algorithm
for multicarrier modulation systems. The algorithm is based on the
sum-absolute autocorrelation minimization (SAAM) of the effec-
tive channel outside a window of desired length. The algorithm
approaches the maximum shortening SNR (SSNR) solution of [1]
under Additive White Gaussian Noise (AWGN) conditions, is com-
putationally less expensive, and robust to non-Gaussian impulsive
noise environments than a latest reported blind adaptive channel
shortening algorithm (SAM). Due to the mostly minimum phase na-
ture of Asymmetric Digital Subscriber Digital Lines (ADSL) chan-
nel impulse responses, a “left” initialization scheme is suggested
for blind adaptive channel shortening equalizers which further en-
hances the robustness of SAAM to impulsive noise. Further studies
have also been undertaken showing that the bit rates achieved by
SAM in AWGN conditions can be improved and approach the max-
imum SSNR solution of [1] too.

1. LITERATURE OVERVIEW

Discrete multitone (DMT) is a special multicarrier modulation
(MCM) technique and has attracted considerable attention as a prac-
tical and viable technology for high-speed data transmission over
spectrally shaped noisy channels such as digital subscriber lines
(DSLs). MCM for wireless channels is typically referred to as Or-
thogonal Frequency Division Multiplexing (OFDM). In MCM, if
the length of the impulse response of the channel is greater than the
cyclic prefix (CP) plus one, inter-block interference (IBI) is intro-
duced by the data spreading between adjacent blocks. Also because
the orthogonality between the sub-carriers is lost, inter-(sub)carrier
(ICI) interference is introduced.
A common technique is to introduce a time-domain equalizer (TEQ)
in the receiver front end which shortens the channel to the CP-length
plus one to combat such IBI/ICI. The resulting shortened channel is,
then, equalized by a bank of one-tap frequency-domain equalizers
(FEQs). Most approaches to TEQ design are non-adaptive, have
high complexity, and require training or channel estimation [3].
Certain applications, such as multipoint or broadcast network con-
figuration in telephone connectivity, digital transmission of TV sig-
nals, and the nature of the mobile networked environment preclude
extensive training and mandate blind equalization [6]. In fact the
VDSL (Very High Speed DSL) standard does not allow for training
sequences for equalization. In addition, no periodic transmission of
a training signal is necessary, therefore, the advantage in terms of
channel capacity by blind channel shortening becomes twofold.
In [2] a blind adaptive method is proposed. It equalizes the chan-
nel to a single spike rather than shortening it, moreover, its com-
putational complexity is also high [3]. A low complexity, blind,
adaptive TEQ algorithm known as MERRY is proposed in [3], but
its parameter updates are performed only once per symbol [4]. In
[4] a blind adaptive algorithm for channel shortening in ADSL has
been proposed. This algorithm minimizes the sum of the squared
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autocorrelations of the output of the TEQ outside a CP-length win-
dow. This algorithms updates more frequently than the MERRY
algorithm but at a significantly higher complexity. Unlike MERRY,
it is not sensitive to synchronization error.
It is well known from the classic work in [5] that least-squares (LS)
estimators are very sensitive to the tail behavior of the probabil-
ity density of measurement errors ( represented here by the additive
noise). Their performance depends significantly on the Gaussian as-
sumption, and even a slight deviation of the noise density from the
Gaussian distribution can, in principle, cause a substantial degrada-
tion of the LS estimate. Therefore the SAM algorithm of [4] can be
robustified to impulse noise by minimizing the sum of the absolute
values (instead of sum of squared values) outside a window of de-
sired length.
The remainder of the paper is organized as follows. Section 2 gives
the system model and the notations. Section 3 and 4 discuss the
SAAM cost function and the adaptive algorithm. Section 5 models
the impulsive noise. Section 6 presents the existence of a good ini-
tialization for blind adaptive equalizers for ADSL channels. Section
7 provides simulations results, and a discussion on the results, and
section 8 concludes the paper.

2. SYSTEM MODEL

The system model is shown in Fig. 1. The signal x(n) is a white,
zero-mean, wide-sense stationary (W.S.S), real and unit variance
source sequence transmitted through the linear finite-impulse re-
sponse (FIR) channel h. v(n) is a zero-mean, i.i.d., noise sequence
uncorrelated with the source sequence and has a variance σ2

v . The
received signal r(n) is

r(n) =
Lh

∑
k=0

h(k)x(n− k)+ v(n)

and y(n), the output of the TEQ given by

y(n) =
Lw

∑
k=0

w(k)r(n− k) = wT rn (1)

where w is the impulse response vector of the equalizer and rn =
[r(n) r(n− 1) . . . r(n−Lw)]T . Lh, Lc, and Lw are the order of the
channel, shortened channel and equalizer respectively. We denote
c = h ? w as the shortened or effective channel. For multicarrier
ADSL applications we assume that 2Lc < N f f t holds, N f f t being
the FFT size [4].

3. SAAM

Our algorithm is a blind adaptive implementation of [1]. For the
effective channel c to have zero taps outside a window of size (v +
1), its autocorrelation values should be zero outside a window of
size (2v + 1). Now the autocorrelation sequence of the effective
channel is given by

Rcc(l) =
Lc

∑
k=0

c(k)c(k− l)

1931



Channel h TEQ w

Adaptive
Algorithm

+
x(n) r(n)

noise v(n)

y(n)

c = h * w

System model for blind adaptive channel shortening

Figure 1: System model for blind adaptive channel shortening.

and for a shortened channel, we must satisfy

Rcc(l) = 0,∀ |l| > v

we, therefore, define a cost function, Jv+1 based upon the sum of
the absolute values of the auto-correlation of the effective channel,
i.e.,

Jv+1 =
Lc

∑
l=v+1

|Rcc(l)| (2)

Note that in equation (2) only the one sided autocorrelation values
are taken into account because of the symmetry property of the au-
tocorrelation sequence. The trivial solution of c = 0 or w = 0 can
be avoided by imposing a norm constraint on the effective channel
response, for instance ‖c‖2

2 = 1 or on the equalizer i.e., ‖w‖2
2 = 1.

The optimization problem can then be stated as

wopt = argw min
‖c‖2

2=1
Jv+1

The autocorrelation sequence of the output y(n) is given by

Ryy(l) = E[y(n)y(n− l)] (3)

= E[(cT xn)+wT vn) (xT
n−lc+vT

n−lw)]

given the stated conditions on x(n) and v(n), equation (3) can be
written as [4]

Ryy(l) = Rcc(l)+σ2
v Rww(l) (4)

so that we can approximate our cost function, denoted as Ĵv+1, in
equation (2) as

Ĵv+1 =
Lc

∑
l=v+1

|Ryy(l)|

=
Lc

∑
l=v+1

|Rcc(l)+σ2
v Rww(l)| (5)

The second term being added is very small due to its multiplication
with σ2

v and we presume that under practical SNR scenarios, we can
drop the hat on Jv+1 so that Ĵv+1 ∼= Jv+1. For this cost function we
need the length of the channel h to determine Lc which is fortunately
known because the CSA test loops have almost all of their energy
in 200 consecutive taps [9]. Our algorithm only requires the output
of the TEQ and is, in that sense, blind.

4. BLIND ADAPTIVE ALGORITHM

The steepest-descent type algorithm to minimize Jv+1 is

wnew = wold −µ∇w (Jv+1) (6)

where µ is the step size and ∇w is the gradient evaluated at w =
wold . A moving average implementation is used to realize the in-
stantaneous cost function

Jinst
v+1(k) =

Lc

∑
l=v+1

∣∣∣∣∣
(k+1)N−1

∑
n=kN

y(n)y(n− l)
N

∣∣∣∣∣ (7)

Here N is a design parameter which determines a tradeoff between
the algorithm complexity and a good estimate of the expectation.
Our algorithm of equation (6), therefore, can be written as (8) given
at top of the next page which, using equation (1), takes the form
of equation (9), also given at the top of next page. The equalizer
vector w must be normalized at every iteration to ensure that ‖c‖2

2 =
1. The introduction of sign function in equation (9) reduces the
computational complexity of the implementation as compared to
the SAM algorithm of [4].

5. GAUSSIAN-MIXTURE NOISE MODEL

Impulse noise is a principal source of degradation in DSL trans-
mission systems and it is one of the most difficult transmission
impairment to suppress. Measurement data show that the impulse
noise events are longer than the maximum error-correcting capac-
ities of the default interleaved forward error-correction (FEC) pro-
vided within current ANSI standards [11]. To model the behavior
of impulse noise, we use a two term Gaussian-mixture model [12].
The probability density function of the noise model has the form

(1− p)N (0,σ2
v )+ pN (0,k2σ2

v ) (10)

with σ > 0, 0 ≤ p ≤ 1, and k ≥ 1. Here the N (0,σ2
v ) term is the

AWGN with zero mean and variance σ2
v and the parameter p is the

probability of contribution from the impulsive component (Gaus-
sian with zero mean and variance k2σ2

v ). By varying p and k, we
simulate the effect of different shapes of impulsive noise on our al-
gorithm performance.

6. “LEFT” EQUALIZER INITIALIZATION

For blind adaptive equalization, the location of the single spike ini-
tialization should be driven according to the center of the mass of
the channel impulse response [6]. The equalizer can, therefore, be
“left”, “center”, or “right” initialized. If we do not have any a prior
knowledge about the channel impulse response, a center spike is a
good strategy. This is motivated by being able to concentrate on the
equalization of the minimum as well as the non-minimum phase re-
sponse of the channel, and because it may lead to benefits in terms
of FIR filter implementation simplicity [7]. CSA loop channels are
mostly minimum phase channels with very few zeros outside the
unit circle (see Fig. (2)). For such channels, the center of the mass
of the impulse response is on the “left” as shown in Fig. (3). Using
this knowledge, we suggest the “left” initialization strategy along-
side the SAAM-cost function. With this initialization, we will gen-
erally be more robust to impulsive noise too because we would,
then, be also using the equalizer to its fullest potential. Simulation
results support this approach.

7. SIMULATION RESULTS

The Matlab code used for simulations is available in [8]. It was
modified to simulate SAAM and the impulsive noise environments.
Standard ADSL downstream parameters were chosen: The CP was
32, the FFT size was 512, the equalizer length was 16, the aver-
aging window size was 32, and the channel was CSA test loop 1
available at [9]. These parameters were also chosen as to compare
the results with those of SAM. The noise power was set such that
σ2

x ‖h‖2/σ2
v = 40 dB. This is a typical value of SNR in ADSL

environments. Total 75 symbols, comprising of 544 samples each,
were used. We employed the moving average implementation of the
SAAM algorithm given in equation (9) with unit norm constraint on
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wk+1 = wk−µ
Lc

∑
l=v+1

[
sign

{
(k+1)N−1

∑
n=kN

y(n)y(n− l)
N

}
×

{
∇w

(
(k+1)N−1

∑
n=kN

y(n)y(n− l)
N

)}]
(8)

wk+1 = wk−µ
Lc

∑
l=v+1

[
sign

{
(k+1)N−1

∑
n=kN

y(n)y(n− l)
N

}
×

{
(k+1)N−1

∑
n=kN

(
y(n)rn−l + y(n− l)rn

N

)}]
(9)
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Figure 2: Pole-zero diagram of CSA loop 1.

the equalizer vector w. The remainder of the explanation is related
to the figures individually.
The impulse responses of the original and the shortened channel are
shown in Fig. (3). The initialization was “left” (single first spike).
Fig. (4) shows our equalizer designed after SAAM converges. In
Fig. (5), we have shown the learning curve of our cost function and
the bit rate as a function of the averaging block number. It is note-
worthy that the bit rate approaches the maximum SSNR solution of
[1] and that the cost function and the bit rate are a smooth func-
tion of each other i.e., the SAAM minima and the bit rate maxima
appear to be located in close proximity. Careful selection of pa-
rameters for the SAM algorithm also leads to the same performance
measures under AWGN (see Fig. (6) dashed-dot curve). Fig. (6)
shows under AWGN, the achievable bit rate versus SNR for SAM,
SAM-optimized, SAAM with center spike initialization, SAAM
with “left” (first spike) initialization, and the maximum SSNR al-
gorithm of [1]. The step sizes used for the adaptive algorithms are
5, 1.05, 0.0003, and 0.00016 respectively. The bit rate is calculated
using 6-dB margin and a 4.2-dB coding gain [10]. The performance
of SAAM is slightly below that of SAM-optimized, this is expected
because robust algorithms are not optimal for the pure AWGN envi-
ronment. They are designed for special conditions (impulsive noise,
in fact Laplacian). However, SAAM with first spike initialization
outperforms SAM-optimized showing existence of such a good ini-
tialization for such channels.
In Fig. (7) we have simulated the effect of impulsive noise on the
quasi-achievable (quasi as we use the same bit rate calculation, to
a first approximation, on the basis that the impulses occur infre-
quently. These results are for a impulsive contribution of only %1)
bit rate by the above adaptive algorithms. The value of k is changed
from 10 to 100 to simulate the amplitude of the impulsive spikes
from 20 dB to 40 dB, while keeping p their contribution factor at
1%. The SNR is 40dB. As expected with increasing k the degrada-
tion in the SAM algorithm is more than in the other two algorithms.
At these parameters settings the practical values of k are between
40 to 100 (from 30 to 40 dB), and the plot for SAM-opt algorithm
is showing a much decrease in bit rate in this range. To illustrate it
more, the convergence behavior is shown in Fig. (8) applying im-
pulses of 40 dB higher than the AWGN and at a contribution factor
of 1%. This is typical level of impulse noise in ADSL environments
where the spikes can totally eliminate the signal for a hundred of mi-

croseconds [11]. It is evident from the Fig. (8) that the behavior of
the SAM algorithm deteriorates, whereas that of SAAM (both cen-
ter spike as well as first spike) remains smooth at higher bit rates.
The results were, in general, similar for the 8 CSA loop channels.

8. CONCLUSION AND FUTURE WORK

We have proposed a new robust blind adaptive channel shortening
algorithm and have shown significant improvement in bit rate even
when the channel is corrupted by impulsive noise. Blind algorithm
of SAM is also optimized to yield better bit rates in AWGN.Future
work will consider the use of other impulsive noise models like α-
stable distributions.
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